利用电位场数据的跨梯度联合反演和岩石物理相关性对铁矿床进行创新成像

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Bardiya Sadraeifar, Maysam Abedi
{"title":"利用电位场数据的跨梯度联合反演和岩石物理相关性对铁矿床进行创新成像","authors":"Bardiya Sadraeifar, Maysam Abedi","doi":"10.1002/nsg.12317","DOIUrl":null,"url":null,"abstract":"This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation\",\"authors\":\"Bardiya Sadraeifar, Maysam Abedi\",\"doi\":\"10.1002/nsg.12317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.\",\"PeriodicalId\":49771,\"journal\":{\"name\":\"Near Surface Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Near Surface Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/nsg.12317\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12317","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究展示了跨梯度联合反演法在火山沉积环境中铁成矿带研究中的应用。赤铁矿或磁铁矿等密度或磁感应强度对比强烈的矿物的存在,有助于建立矿体随深度分布的模型。我们的方法包括通过独立反演和联合反演,结合稀疏正则化以及岩芯数据产生的岩石物理模型,对重建的密度和磁感应强度模型进行统一解释。这种方法是揭示铁矿石矿床真实地质环境的理想策略。我们首先模拟了一个与实际情况非常相似的合成模型,以评估交叉梯度联合反演算法与独立反演算法的功效。随后,在伊朗中部沙瓦兹含铁矿床采集的 500 × 600 平方米区域的重力和磁力数据上实施了反演算法。研究区域的主要氧化铁-磷灰石型矿化与 Nain-Dehshir-Baft 断层有关,该断层为西北-东南走向的走向滑动断层。虽然两种反演方法都能得到令人满意的模型,但在联合反演中加入跨梯度约束,能更准确地划分出断层系统中的氧化铁矿床。这种改进有利于区分赤铁矿和小部分磁铁矿,从而更准确地估计矿石深度。反演结果表明,磁铁矿化被广泛的赤铁矿化所覆盖,两者相对位于同一深度区间,被大约 15-25 米的沉积物序列所覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation
This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Near Surface Geophysics
Near Surface Geophysics 地学-地球化学与地球物理
CiteScore
3.60
自引率
12.50%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信