{"title":"用于增强电磁干扰屏蔽和机械热稳定性的多功能金属化刨花板","authors":"Qiang Guo, Yanfei Pan, Shuaiqi Hu, Long Qing, Yu Wang, Jintian Huang","doi":"10.1007/s00226-024-01588-5","DOIUrl":null,"url":null,"abstract":"<div><p>The development of multifunctional electromagnetic interference (EMI) shielding materials with low cost, stable performance and mass production is still facing great challenges. High-density traditional metals limit the application of EMI shielding materials. The unique structure of wood is considered an effective way to solve the above-mentioned problems. In this study, waste wood was used as raw material to prepare low-energy metallized particleboard. The particleboard was functionally finished to show excellent hydrophobic properties and been used stably in a humid environment. Dynamic thermal mechanical properties and mechanical properties analyses of particleboard were carried out. The bend strength (MOR), elastic modulus (MOE) and tensile strength were 30.50 MPa, 5384 MPa and 7.85 MPa, respectively. Metallized particleboard exhibited excellent electromagnetic shielding effectiveness (EMI SE) (average value 81.62 dB) in the entire X-band. The preparation of wood-based shielding metallized particleboard provides a feasible strategy for replacing traditional metal materials.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional metallized particleboard for enhanced electromagnetic interference shielding and mechanical thermal stability\",\"authors\":\"Qiang Guo, Yanfei Pan, Shuaiqi Hu, Long Qing, Yu Wang, Jintian Huang\",\"doi\":\"10.1007/s00226-024-01588-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of multifunctional electromagnetic interference (EMI) shielding materials with low cost, stable performance and mass production is still facing great challenges. High-density traditional metals limit the application of EMI shielding materials. The unique structure of wood is considered an effective way to solve the above-mentioned problems. In this study, waste wood was used as raw material to prepare low-energy metallized particleboard. The particleboard was functionally finished to show excellent hydrophobic properties and been used stably in a humid environment. Dynamic thermal mechanical properties and mechanical properties analyses of particleboard were carried out. The bend strength (MOR), elastic modulus (MOE) and tensile strength were 30.50 MPa, 5384 MPa and 7.85 MPa, respectively. Metallized particleboard exhibited excellent electromagnetic shielding effectiveness (EMI SE) (average value 81.62 dB) in the entire X-band. The preparation of wood-based shielding metallized particleboard provides a feasible strategy for replacing traditional metal materials.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01588-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01588-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Multifunctional metallized particleboard for enhanced electromagnetic interference shielding and mechanical thermal stability
The development of multifunctional electromagnetic interference (EMI) shielding materials with low cost, stable performance and mass production is still facing great challenges. High-density traditional metals limit the application of EMI shielding materials. The unique structure of wood is considered an effective way to solve the above-mentioned problems. In this study, waste wood was used as raw material to prepare low-energy metallized particleboard. The particleboard was functionally finished to show excellent hydrophobic properties and been used stably in a humid environment. Dynamic thermal mechanical properties and mechanical properties analyses of particleboard were carried out. The bend strength (MOR), elastic modulus (MOE) and tensile strength were 30.50 MPa, 5384 MPa and 7.85 MPa, respectively. Metallized particleboard exhibited excellent electromagnetic shielding effectiveness (EMI SE) (average value 81.62 dB) in the entire X-band. The preparation of wood-based shielding metallized particleboard provides a feasible strategy for replacing traditional metal materials.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.