微型涡旋发生器的涡旋特征和参数研究及其近场边界层效应

Gilles De Baets, A. Szabó, P. T. Nagy, G. Paál, M. Vanierschot
{"title":"微型涡旋发生器的涡旋特征和参数研究及其近场边界层效应","authors":"Gilles De Baets, A. Szabó, P. T. Nagy, G. Paál, M. Vanierschot","doi":"10.3390/app14166966","DOIUrl":null,"url":null,"abstract":"Delaying the onset of laminar-turbulent transition is an attractive method in reducing skin friction drag, especially on streamlined bodies where Tollmien–Schlichting instabilities are the dominating mechanism for transition. Miniature Vortex Generators (MVGs) offer an effective approach to attenuate these instabilities by generating counter-rotating vortex pairs. They are placed in pairs within an array and resemble small-winglet-type elements. The conventional methodology involves adjusting the MVG parameters and conducting computationally expensive DNS and/or downstream stability analyses to assess their effectiveness. However, analyzing the vortex parameters of MVG-generated vortices can potentially guide a more targeted approach to modifying the MVG parameters and identifying the critical factors for transition delay. Therefore, this study investigates the changes in three primary MVG parameters, namely inner distance, periodicity, and height, and utilizes computational fluid dynamics (CFDs) analysis to create a dataset that examines the characteristics of the generated counter-rotating vortex pairs and their potential in drag reduction. The objective is to establish correlations among these parameters and their influence on delaying transition. The results show that there is an optimal ratio between the MVG height and boundary layer thickness. Higher MVGs cause a decrease in the vortex radius and an increase in the amount of circulation, raising the likeliness of bypass transition. The derived correlations between the different MVG parameters show that the vortex radius is the most critical one and is hence an important parameter in the drag reduction potential.","PeriodicalId":502388,"journal":{"name":"Applied Sciences","volume":"13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex Characterization and Parametric Study of Miniature Vortex Generators and Their Near-Field Boundary Layer Effects\",\"authors\":\"Gilles De Baets, A. Szabó, P. T. Nagy, G. Paál, M. Vanierschot\",\"doi\":\"10.3390/app14166966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delaying the onset of laminar-turbulent transition is an attractive method in reducing skin friction drag, especially on streamlined bodies where Tollmien–Schlichting instabilities are the dominating mechanism for transition. Miniature Vortex Generators (MVGs) offer an effective approach to attenuate these instabilities by generating counter-rotating vortex pairs. They are placed in pairs within an array and resemble small-winglet-type elements. The conventional methodology involves adjusting the MVG parameters and conducting computationally expensive DNS and/or downstream stability analyses to assess their effectiveness. However, analyzing the vortex parameters of MVG-generated vortices can potentially guide a more targeted approach to modifying the MVG parameters and identifying the critical factors for transition delay. Therefore, this study investigates the changes in three primary MVG parameters, namely inner distance, periodicity, and height, and utilizes computational fluid dynamics (CFDs) analysis to create a dataset that examines the characteristics of the generated counter-rotating vortex pairs and their potential in drag reduction. The objective is to establish correlations among these parameters and their influence on delaying transition. The results show that there is an optimal ratio between the MVG height and boundary layer thickness. Higher MVGs cause a decrease in the vortex radius and an increase in the amount of circulation, raising the likeliness of bypass transition. The derived correlations between the different MVG parameters show that the vortex radius is the most critical one and is hence an important parameter in the drag reduction potential.\",\"PeriodicalId\":502388,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14166966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14166966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

延迟层流-湍流过渡的开始时间是减少表皮摩擦阻力的一种有吸引力的方法,尤其是在流线型物体上,因为在流线型物体上,托尔米安-施利克廷不稳定性是过渡的主要机制。微型涡流发生器(MVG)通过产生反向旋转的涡流对,为减弱这些不稳定性提供了一种有效的方法。它们成对地放置在一个阵列中,类似于小翼型元件。传统方法包括调整 MVG 参数和进行计算成本高昂的 DNS 和/或下游稳定性分析,以评估其有效性。然而,分析 MVG 产生的涡旋参数有可能指导更有针对性的方法来修改 MVG 参数并确定过渡延迟的关键因素。因此,本研究调查了三个主要 MVG 参数(即内距、周期性和高度)的变化,并利用计算流体动力学(CFD)分析创建了一个数据集,以检查生成的反向旋转涡旋对的特征及其在减少阻力方面的潜力。目的是确定这些参数之间的相关性及其对延迟过渡的影响。结果表明,MVG 高度和边界层厚度之间存在一个最佳比例。MVG 越高,涡旋半径越小,环流量越大,从而提高了绕流过渡的可能性。不同 MVG 参数之间的相关性表明,涡旋半径是最关键的参数,因此是降低阻力潜力的重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex Characterization and Parametric Study of Miniature Vortex Generators and Their Near-Field Boundary Layer Effects
Delaying the onset of laminar-turbulent transition is an attractive method in reducing skin friction drag, especially on streamlined bodies where Tollmien–Schlichting instabilities are the dominating mechanism for transition. Miniature Vortex Generators (MVGs) offer an effective approach to attenuate these instabilities by generating counter-rotating vortex pairs. They are placed in pairs within an array and resemble small-winglet-type elements. The conventional methodology involves adjusting the MVG parameters and conducting computationally expensive DNS and/or downstream stability analyses to assess their effectiveness. However, analyzing the vortex parameters of MVG-generated vortices can potentially guide a more targeted approach to modifying the MVG parameters and identifying the critical factors for transition delay. Therefore, this study investigates the changes in three primary MVG parameters, namely inner distance, periodicity, and height, and utilizes computational fluid dynamics (CFDs) analysis to create a dataset that examines the characteristics of the generated counter-rotating vortex pairs and their potential in drag reduction. The objective is to establish correlations among these parameters and their influence on delaying transition. The results show that there is an optimal ratio between the MVG height and boundary layer thickness. Higher MVGs cause a decrease in the vortex radius and an increase in the amount of circulation, raising the likeliness of bypass transition. The derived correlations between the different MVG parameters show that the vortex radius is the most critical one and is hence an important parameter in the drag reduction potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信