现场监测和分析内部覆盖层分离的发展特征

Jianlin Xie, Xiaozhen Wang, Wei Qiao
{"title":"现场监测和分析内部覆盖层分离的发展特征","authors":"Jianlin Xie, Xiaozhen Wang, Wei Qiao","doi":"10.3390/app14166935","DOIUrl":null,"url":null,"abstract":"This study conducted in situ monitoring by means of distributed optical fiber sensors (DOFS) and multipoint borehole extensometers (MPBXs). Combined with the measurement data of water level depth, the development of separation was analyzed comprehensively for the first time. At first, the development height of the water-conducting fracture zone was predicted. As the results show, the predictive data is 173.95 m. According to the in situ monitoring data, the top boundary height of the water-conducting fracture zone is determined at a height of 186.1~207.9 m, which is in line with the predicted results. Based on the DOFS data, it can be inferred that the separation layer exists at the depths of 351.3~390.4 m. According to MPBXs data, the largest development of the separation layer is also inferred to be located at the depths of 324~388 m. The in situ monitoring methods in this study can directly obtain the development position of the separation layer in the internal overburden, which can provide good guidance for the on-site control of water disasters caused by water accumulation in separation.","PeriodicalId":502388,"journal":{"name":"Applied Sciences","volume":"13 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Monitoring and Analysis of the Development Characteristics of Separation in Internal Overburden\",\"authors\":\"Jianlin Xie, Xiaozhen Wang, Wei Qiao\",\"doi\":\"10.3390/app14166935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study conducted in situ monitoring by means of distributed optical fiber sensors (DOFS) and multipoint borehole extensometers (MPBXs). Combined with the measurement data of water level depth, the development of separation was analyzed comprehensively for the first time. At first, the development height of the water-conducting fracture zone was predicted. As the results show, the predictive data is 173.95 m. According to the in situ monitoring data, the top boundary height of the water-conducting fracture zone is determined at a height of 186.1~207.9 m, which is in line with the predicted results. Based on the DOFS data, it can be inferred that the separation layer exists at the depths of 351.3~390.4 m. According to MPBXs data, the largest development of the separation layer is also inferred to be located at the depths of 324~388 m. The in situ monitoring methods in this study can directly obtain the development position of the separation layer in the internal overburden, which can provide good guidance for the on-site control of water disasters caused by water accumulation in separation.\",\"PeriodicalId\":502388,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14166935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14166935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究通过分布式光纤传感器(DOFS)和多点钻孔延伸仪(MPBX)进行了现场监测。结合水位深度的测量数据,首次全面分析了分离的发育情况。首先,预测了导水断裂带的发育高度。结果表明,预测数据为 173.95 米。根据现场监测数据,确定导水断裂带顶边界高度为 186.1~207.9 米,与预测结果一致。根据DOFS数据,可推断分离层存在于351.3~390.4 m深处;根据MPBXs数据,也可推断分离层最大发育位置位于324~388 m深处。本研究的原位监测方法可直接获得分离层在内部覆盖层中的发育位置,为现场控制分离积水引起的水灾害提供了很好的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Monitoring and Analysis of the Development Characteristics of Separation in Internal Overburden
This study conducted in situ monitoring by means of distributed optical fiber sensors (DOFS) and multipoint borehole extensometers (MPBXs). Combined with the measurement data of water level depth, the development of separation was analyzed comprehensively for the first time. At first, the development height of the water-conducting fracture zone was predicted. As the results show, the predictive data is 173.95 m. According to the in situ monitoring data, the top boundary height of the water-conducting fracture zone is determined at a height of 186.1~207.9 m, which is in line with the predicted results. Based on the DOFS data, it can be inferred that the separation layer exists at the depths of 351.3~390.4 m. According to MPBXs data, the largest development of the separation layer is also inferred to be located at the depths of 324~388 m. The in situ monitoring methods in this study can directly obtain the development position of the separation layer in the internal overburden, which can provide good guidance for the on-site control of water disasters caused by water accumulation in separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信