{"title":"美国大陆上空产生冰雹风暴的雷达对流特征和大气环境","authors":"Edward R. Vasquez, Chuntao Liu","doi":"10.1175/mwr-d-23-0151.1","DOIUrl":null,"url":null,"abstract":"\nHail smaller than 0.75 inch is known to cause economic impacts yet remains understudied due to report biases towards recording larger hail sizes (≤1 inch). In this study, we assembled ground hail reports during 2017-2022 from the National Centers for Environmental Information (NCEI) Storm Data, Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) and Meteorological Phenomena Identification Near the Ground (mPING) databases. Then these reports are collocated with the attributes of radar-derived convective features from the Multi-Radar/Multi-sensor System (MRMS) and the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) atmospheric vertical profiles to construct a dataset describing properties of a full spectrum of hailstorms. The characteristics of radar reflectivity and atmospheric profiles are examined for hail of different sizes reported within selected regions over the Contiguous United States (CONUS). In addition to the seasonal and diurnal variations, the morphology of convective features shows apparent regional differences from west to east in CONUS. The Maximum Expected Size of Hail (MESH) performance against reported hail sizes shows underestimation of hail with significant sizes, and overestimation of small hail sizes.\nERA5 vertical atmospheric profiles are explored to form relationships between storm environment and hail sizes. In addition to the relationships between wind shear and hail sizes, the roles of low-level relative humidity and freezing level height in regard to hail melting are discussed.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar-derived Convective Features and Atmospheric Environments of Hail-Producing Storms over the Contiguous United States\",\"authors\":\"Edward R. Vasquez, Chuntao Liu\",\"doi\":\"10.1175/mwr-d-23-0151.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nHail smaller than 0.75 inch is known to cause economic impacts yet remains understudied due to report biases towards recording larger hail sizes (≤1 inch). In this study, we assembled ground hail reports during 2017-2022 from the National Centers for Environmental Information (NCEI) Storm Data, Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) and Meteorological Phenomena Identification Near the Ground (mPING) databases. Then these reports are collocated with the attributes of radar-derived convective features from the Multi-Radar/Multi-sensor System (MRMS) and the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) atmospheric vertical profiles to construct a dataset describing properties of a full spectrum of hailstorms. The characteristics of radar reflectivity and atmospheric profiles are examined for hail of different sizes reported within selected regions over the Contiguous United States (CONUS). In addition to the seasonal and diurnal variations, the morphology of convective features shows apparent regional differences from west to east in CONUS. The Maximum Expected Size of Hail (MESH) performance against reported hail sizes shows underestimation of hail with significant sizes, and overestimation of small hail sizes.\\nERA5 vertical atmospheric profiles are explored to form relationships between storm environment and hail sizes. In addition to the relationships between wind shear and hail sizes, the roles of low-level relative humidity and freezing level height in regard to hail melting are discussed.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0151.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0151.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Radar-derived Convective Features and Atmospheric Environments of Hail-Producing Storms over the Contiguous United States
Hail smaller than 0.75 inch is known to cause economic impacts yet remains understudied due to report biases towards recording larger hail sizes (≤1 inch). In this study, we assembled ground hail reports during 2017-2022 from the National Centers for Environmental Information (NCEI) Storm Data, Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) and Meteorological Phenomena Identification Near the Ground (mPING) databases. Then these reports are collocated with the attributes of radar-derived convective features from the Multi-Radar/Multi-sensor System (MRMS) and the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) atmospheric vertical profiles to construct a dataset describing properties of a full spectrum of hailstorms. The characteristics of radar reflectivity and atmospheric profiles are examined for hail of different sizes reported within selected regions over the Contiguous United States (CONUS). In addition to the seasonal and diurnal variations, the morphology of convective features shows apparent regional differences from west to east in CONUS. The Maximum Expected Size of Hail (MESH) performance against reported hail sizes shows underestimation of hail with significant sizes, and overestimation of small hail sizes.
ERA5 vertical atmospheric profiles are explored to form relationships between storm environment and hail sizes. In addition to the relationships between wind shear and hail sizes, the roles of low-level relative humidity and freezing level height in regard to hail melting are discussed.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.