Liu Jin, Yiding Ji, Dong Li, Yushuang Lei, Xiuli Du
{"title":"CFRP 片材加固 RC 柱纯扭转性能的尺寸和形状效应分析","authors":"Liu Jin, Yiding Ji, Dong Li, Yushuang Lei, Xiuli Du","doi":"10.1007/s43452-024-01024-2","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the torsional performance of reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets, a mechanical analysis model was established using a three-dimensional numerical method. The model considered the heterogeneity of concrete, and the interactions between steel bars/CFRP sheets and concrete, simultaneously. The validity of the numerical model was first verified. Subsequently, pure torsion was added on 40 CFRP sheet-strengthened RC columns to investigate the influences of the fiber ratio, the structure size, and the cross-section shape on their torsional performance. Results showed that (1) size effect can be observed in the nominal torsional strength of both square and circular CFRP sheet-strengthened RC columns; (2) the size effect of square columns was stronger than circular columns due to weaker confinement effects of CFRP sheets on the square columns; (3) the addition of CFRP sheets can simultaneously improve the torsional strength and weaken the size effect, which is beneficial to the torsional performance of the column. Moreover, a torsional size effect law was proposed to predict the torsional strength of CFRP sheet-strengthened RC columns based on current simulation results.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size- and shape-effects analysis on the pure torsional performance of CFRP sheet-strengthened RC columns\",\"authors\":\"Liu Jin, Yiding Ji, Dong Li, Yushuang Lei, Xiuli Du\",\"doi\":\"10.1007/s43452-024-01024-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the torsional performance of reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets, a mechanical analysis model was established using a three-dimensional numerical method. The model considered the heterogeneity of concrete, and the interactions between steel bars/CFRP sheets and concrete, simultaneously. The validity of the numerical model was first verified. Subsequently, pure torsion was added on 40 CFRP sheet-strengthened RC columns to investigate the influences of the fiber ratio, the structure size, and the cross-section shape on their torsional performance. Results showed that (1) size effect can be observed in the nominal torsional strength of both square and circular CFRP sheet-strengthened RC columns; (2) the size effect of square columns was stronger than circular columns due to weaker confinement effects of CFRP sheets on the square columns; (3) the addition of CFRP sheets can simultaneously improve the torsional strength and weaken the size effect, which is beneficial to the torsional performance of the column. Moreover, a torsional size effect law was proposed to predict the torsional strength of CFRP sheet-strengthened RC columns based on current simulation results.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01024-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01024-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Size- and shape-effects analysis on the pure torsional performance of CFRP sheet-strengthened RC columns
To investigate the torsional performance of reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets, a mechanical analysis model was established using a three-dimensional numerical method. The model considered the heterogeneity of concrete, and the interactions between steel bars/CFRP sheets and concrete, simultaneously. The validity of the numerical model was first verified. Subsequently, pure torsion was added on 40 CFRP sheet-strengthened RC columns to investigate the influences of the fiber ratio, the structure size, and the cross-section shape on their torsional performance. Results showed that (1) size effect can be observed in the nominal torsional strength of both square and circular CFRP sheet-strengthened RC columns; (2) the size effect of square columns was stronger than circular columns due to weaker confinement effects of CFRP sheets on the square columns; (3) the addition of CFRP sheets can simultaneously improve the torsional strength and weaken the size effect, which is beneficial to the torsional performance of the column. Moreover, a torsional size effect law was proposed to predict the torsional strength of CFRP sheet-strengthened RC columns based on current simulation results.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.