Qinglin Meng, Xinyu Tong, Sheharyar Hussain, Fengzhang Luo, Fei Zhou, Lei Liu, Ying He, Xiaolong Jin, Botong Li
{"title":"彻底改变光伏消费和电动汽车充电:住宅配电系统的新方法","authors":"Qinglin Meng, Xinyu Tong, Sheharyar Hussain, Fengzhang Luo, Fei Zhou, Lei Liu, Ying He, Xiaolong Jin, Botong Li","doi":"10.1049/gtd2.13232","DOIUrl":null,"url":null,"abstract":"<p>Electric vehicles (EVs) and small photovoltaic (PV) installations advance residential power grids by lowering charging costs and fostering eco-friendly operations. Yet, the variable nature of EV charging presents challenges to grid reliability. This research introduces a Monte Carlo-based simulation for predicting EV charging loads and a systematic charging method that integrates a ‘green electricity’ pricing scheme with a joint optimization model for PV and EV management. By applying an improved ant lion optimizer (IALO) algorithm enriched with differential evolution features, an optimization strategy that markedly enhances grid performance is devised. In a park scenario, this ‘green electricity’ model reduced the mean square error of EV charging load by 11.82%, smoothed the power load curve, and improved grid stability. When compared with particle swarm optimization (PSO) and grey wolf optimizer (GWO) algorithms, the IALO algorithm boosted overall revenue by 16.8% and 12.8%, increased PV utilization by 162.3% and 37.1%, and significantly cut carbon emissions by 159.6% and 31.6%, respectively. These outcomes affirm the financial, environmental, and functional benefits of our proposed approach.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 17","pages":"2822-2833"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13232","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing photovoltaic consumption and electric vehicle charging: A novel approach for residential distribution systems\",\"authors\":\"Qinglin Meng, Xinyu Tong, Sheharyar Hussain, Fengzhang Luo, Fei Zhou, Lei Liu, Ying He, Xiaolong Jin, Botong Li\",\"doi\":\"10.1049/gtd2.13232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric vehicles (EVs) and small photovoltaic (PV) installations advance residential power grids by lowering charging costs and fostering eco-friendly operations. Yet, the variable nature of EV charging presents challenges to grid reliability. This research introduces a Monte Carlo-based simulation for predicting EV charging loads and a systematic charging method that integrates a ‘green electricity’ pricing scheme with a joint optimization model for PV and EV management. By applying an improved ant lion optimizer (IALO) algorithm enriched with differential evolution features, an optimization strategy that markedly enhances grid performance is devised. In a park scenario, this ‘green electricity’ model reduced the mean square error of EV charging load by 11.82%, smoothed the power load curve, and improved grid stability. When compared with particle swarm optimization (PSO) and grey wolf optimizer (GWO) algorithms, the IALO algorithm boosted overall revenue by 16.8% and 12.8%, increased PV utilization by 162.3% and 37.1%, and significantly cut carbon emissions by 159.6% and 31.6%, respectively. These outcomes affirm the financial, environmental, and functional benefits of our proposed approach.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 17\",\"pages\":\"2822-2833\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13232\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13232","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Revolutionizing photovoltaic consumption and electric vehicle charging: A novel approach for residential distribution systems
Electric vehicles (EVs) and small photovoltaic (PV) installations advance residential power grids by lowering charging costs and fostering eco-friendly operations. Yet, the variable nature of EV charging presents challenges to grid reliability. This research introduces a Monte Carlo-based simulation for predicting EV charging loads and a systematic charging method that integrates a ‘green electricity’ pricing scheme with a joint optimization model for PV and EV management. By applying an improved ant lion optimizer (IALO) algorithm enriched with differential evolution features, an optimization strategy that markedly enhances grid performance is devised. In a park scenario, this ‘green electricity’ model reduced the mean square error of EV charging load by 11.82%, smoothed the power load curve, and improved grid stability. When compared with particle swarm optimization (PSO) and grey wolf optimizer (GWO) algorithms, the IALO algorithm boosted overall revenue by 16.8% and 12.8%, increased PV utilization by 162.3% and 37.1%, and significantly cut carbon emissions by 159.6% and 31.6%, respectively. These outcomes affirm the financial, environmental, and functional benefits of our proposed approach.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf