H. Naderpour, Asghar SoltaniMatin, A. Kheyroddin, P. Fakharian, Nima Ezami
{"title":"优化钢筋混凝土建筑中各级调谐质量阻尼器的抗震性能","authors":"H. Naderpour, Asghar SoltaniMatin, A. Kheyroddin, P. Fakharian, Nima Ezami","doi":"10.3390/buildings14082443","DOIUrl":null,"url":null,"abstract":"This study aimed to rigorously evaluate the impact of tuned mass dampers (TMDs) on structural response under seismic excitation. By strategically placing TMDs at various levels within the structures, the research sought to determine their effectiveness in mitigating structural movement. A single-degree-of-freedom (SDOF) system incorporating TMDs was utilized to model structures of 10, 13, and 16 stories, each configured with TMDs at different heights. The structures were subjected to near-fault earthquakes to assess the efficacy of TMDs in reducing structural response. The findings revealed significant enhancements in structural performance when TMDs were optimally positioned. Specifically, a 50% reduction in both acceleration and displacement, alongside a 65% decrease in maximum drift, underscored the effectiveness of TMD deployment. Furthermore, the study demonstrated that distributing multiple TMDs along the height of the structure provided superior drift control. Notably, positioning TMDs within the upper one-third of the structure yielded the most pronounced improvements in acceleration, displacement, and maximum drift. Finally, the research indicates that the strategic incorporation of TMDs can significantly enhance the seismic resilience of structures. The results highlight the substantial benefits of TMDs in optimizing acceleration, displacement, and drift, thereby affirming their critical role in seismic design and retrofitting strategies.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Seismic Performance of Tuned Mass Dampers at Various Levels in Reinforced Concrete Buildings\",\"authors\":\"H. Naderpour, Asghar SoltaniMatin, A. Kheyroddin, P. Fakharian, Nima Ezami\",\"doi\":\"10.3390/buildings14082443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to rigorously evaluate the impact of tuned mass dampers (TMDs) on structural response under seismic excitation. By strategically placing TMDs at various levels within the structures, the research sought to determine their effectiveness in mitigating structural movement. A single-degree-of-freedom (SDOF) system incorporating TMDs was utilized to model structures of 10, 13, and 16 stories, each configured with TMDs at different heights. The structures were subjected to near-fault earthquakes to assess the efficacy of TMDs in reducing structural response. The findings revealed significant enhancements in structural performance when TMDs were optimally positioned. Specifically, a 50% reduction in both acceleration and displacement, alongside a 65% decrease in maximum drift, underscored the effectiveness of TMD deployment. Furthermore, the study demonstrated that distributing multiple TMDs along the height of the structure provided superior drift control. Notably, positioning TMDs within the upper one-third of the structure yielded the most pronounced improvements in acceleration, displacement, and maximum drift. Finally, the research indicates that the strategic incorporation of TMDs can significantly enhance the seismic resilience of structures. The results highlight the substantial benefits of TMDs in optimizing acceleration, displacement, and drift, thereby affirming their critical role in seismic design and retrofitting strategies.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082443\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082443","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimizing Seismic Performance of Tuned Mass Dampers at Various Levels in Reinforced Concrete Buildings
This study aimed to rigorously evaluate the impact of tuned mass dampers (TMDs) on structural response under seismic excitation. By strategically placing TMDs at various levels within the structures, the research sought to determine their effectiveness in mitigating structural movement. A single-degree-of-freedom (SDOF) system incorporating TMDs was utilized to model structures of 10, 13, and 16 stories, each configured with TMDs at different heights. The structures were subjected to near-fault earthquakes to assess the efficacy of TMDs in reducing structural response. The findings revealed significant enhancements in structural performance when TMDs were optimally positioned. Specifically, a 50% reduction in both acceleration and displacement, alongside a 65% decrease in maximum drift, underscored the effectiveness of TMD deployment. Furthermore, the study demonstrated that distributing multiple TMDs along the height of the structure provided superior drift control. Notably, positioning TMDs within the upper one-third of the structure yielded the most pronounced improvements in acceleration, displacement, and maximum drift. Finally, the research indicates that the strategic incorporation of TMDs can significantly enhance the seismic resilience of structures. The results highlight the substantial benefits of TMDs in optimizing acceleration, displacement, and drift, thereby affirming their critical role in seismic design and retrofitting strategies.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates