环氧-氧化铝功能分级纳米复合材料:氧化铝的分级和形态对冲击强度和粘弹性能的影响

IF 2.4 3区 化学 Q3 POLYMER SCIENCE
Sudhir Kumar Mishra, Dharmendra Kumar Shukla, Rabindra Kumar Patel
{"title":"环氧-氧化铝功能分级纳米复合材料:氧化铝的分级和形态对冲击强度和粘弹性能的影响","authors":"Sudhir Kumar Mishra,&nbsp;Dharmendra Kumar Shukla,&nbsp;Rabindra Kumar Patel","doi":"10.1007/s13726-024-01366-x","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents an experimental investigation of low-velocity impact and dynamic mechanical testing of epoxy-aluminium oxide (alumina), functionally graded nanocomposite for the above two different directions of loading. Two different morphologies (rod and spherical) of alumina nanoparticles were diffused in epoxy resin by ultrasonication technique. Functionally graded polymer nanocomposites (FGPNCs) were prepared by varying the weight percentage (% by weight) of nanoparticles in the thickness direction. Sequential casting was adopted for synthesizing the nanocomposite layers having 0%, 0.25%, 0.5%, 0.75% and 1% (by weights) of nanoparticles in a vertical acrylic mould. Transmission electron micrographs showed a uniform dispersion of alumina nanoparticles within the FGPNCs. FGPNC containing nanorods and spherical nanoparticles exhibited improvement of 11% and 8%, respectively, compared to neat epoxy when impacted from the direction of the nanocomposite layer. Whereas, when the impact was from the direction of the neat epoxy layer, the impact strength of FGPNC having nanorods improved by 7% while only a slight increment in the impact strength of FGPNC having spherical nanoparticles was observed in comparison to neat epoxy. Field emission scanning electron micrographs (FESEM) of the fractured surfaces revealed the responsible toughening mechanisms of FGPNCs for different impact loadings. Gradation and addition of alumina nanoparticles in epoxy had a stronger effect on the storage modulus in the rubbery region compared to the glassy region. In the rubbery region, the storage modulus of FGPNC (nanorods) and FGPNC (spherical) was recorded three times and two times higher than that in the glassy region, respectively, when the samples were loaded from the direction of the nanocomposite layer.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 2","pages":"157 - 169"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epoxy-alumina functionally graded nanocomposites: gradation and morphological effect of alumina on impact strength and viscoelastic properties\",\"authors\":\"Sudhir Kumar Mishra,&nbsp;Dharmendra Kumar Shukla,&nbsp;Rabindra Kumar Patel\",\"doi\":\"10.1007/s13726-024-01366-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents an experimental investigation of low-velocity impact and dynamic mechanical testing of epoxy-aluminium oxide (alumina), functionally graded nanocomposite for the above two different directions of loading. Two different morphologies (rod and spherical) of alumina nanoparticles were diffused in epoxy resin by ultrasonication technique. Functionally graded polymer nanocomposites (FGPNCs) were prepared by varying the weight percentage (% by weight) of nanoparticles in the thickness direction. Sequential casting was adopted for synthesizing the nanocomposite layers having 0%, 0.25%, 0.5%, 0.75% and 1% (by weights) of nanoparticles in a vertical acrylic mould. Transmission electron micrographs showed a uniform dispersion of alumina nanoparticles within the FGPNCs. FGPNC containing nanorods and spherical nanoparticles exhibited improvement of 11% and 8%, respectively, compared to neat epoxy when impacted from the direction of the nanocomposite layer. Whereas, when the impact was from the direction of the neat epoxy layer, the impact strength of FGPNC having nanorods improved by 7% while only a slight increment in the impact strength of FGPNC having spherical nanoparticles was observed in comparison to neat epoxy. Field emission scanning electron micrographs (FESEM) of the fractured surfaces revealed the responsible toughening mechanisms of FGPNCs for different impact loadings. Gradation and addition of alumina nanoparticles in epoxy had a stronger effect on the storage modulus in the rubbery region compared to the glassy region. In the rubbery region, the storage modulus of FGPNC (nanorods) and FGPNC (spherical) was recorded three times and two times higher than that in the glassy region, respectively, when the samples were loaded from the direction of the nanocomposite layer.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"34 2\",\"pages\":\"157 - 169\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01366-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01366-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Epoxy-alumina functionally graded nanocomposites: gradation and morphological effect of alumina on impact strength and viscoelastic properties

Epoxy-alumina functionally graded nanocomposites: gradation and morphological effect of alumina on impact strength and viscoelastic properties

Epoxy-alumina functionally graded nanocomposites: gradation and morphological effect of alumina on impact strength and viscoelastic properties

This article presents an experimental investigation of low-velocity impact and dynamic mechanical testing of epoxy-aluminium oxide (alumina), functionally graded nanocomposite for the above two different directions of loading. Two different morphologies (rod and spherical) of alumina nanoparticles were diffused in epoxy resin by ultrasonication technique. Functionally graded polymer nanocomposites (FGPNCs) were prepared by varying the weight percentage (% by weight) of nanoparticles in the thickness direction. Sequential casting was adopted for synthesizing the nanocomposite layers having 0%, 0.25%, 0.5%, 0.75% and 1% (by weights) of nanoparticles in a vertical acrylic mould. Transmission electron micrographs showed a uniform dispersion of alumina nanoparticles within the FGPNCs. FGPNC containing nanorods and spherical nanoparticles exhibited improvement of 11% and 8%, respectively, compared to neat epoxy when impacted from the direction of the nanocomposite layer. Whereas, when the impact was from the direction of the neat epoxy layer, the impact strength of FGPNC having nanorods improved by 7% while only a slight increment in the impact strength of FGPNC having spherical nanoparticles was observed in comparison to neat epoxy. Field emission scanning electron micrographs (FESEM) of the fractured surfaces revealed the responsible toughening mechanisms of FGPNCs for different impact loadings. Gradation and addition of alumina nanoparticles in epoxy had a stronger effect on the storage modulus in the rubbery region compared to the glassy region. In the rubbery region, the storage modulus of FGPNC (nanorods) and FGPNC (spherical) was recorded three times and two times higher than that in the glassy region, respectively, when the samples were loaded from the direction of the nanocomposite layer.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信