{"title":"聚苯胺/铁-氧化锌纳米复合材料修饰的玻璃碳电极简单快速地电化学测定蔬菜中的硫丹含量","authors":"Toleshi Teshome, Abera Gure, Shimeles Addisu Kitte, Guta Gonfa","doi":"10.1007/s10008-024-06041-y","DOIUrl":null,"url":null,"abstract":"<div><p>Endosulfan is an organochlorine pesticide widely used in agriculture to protect crops such as cotton, soybeans, coffee, tea, cereals, fruits, vegetables, and grains from pests. However, exposure to low concentrations of endosulfan causes harmful effects on humans’ health. Therefore, the determination of endosulfan in food samples by a fast, simple, and cost-effective method is pivotal. In this study, an electrochemical sensor based on a polyaniline/Fe-ZnO-modified glassy carbon electrode (PANI/Fe-ZnO/GCE) was developed for the determination of endosulfan in vegetables. The synthesized nanomaterials were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). PANI/Fe-ZnO/GCE showed remarkable electrocatalytic activity for the determination of endosulfan in vegetables. It also exhibited a good linear response to endosulfan concentrations ranging from 1 to 400 µM. The method displayed a low detection limit (LOD) of 0.003 µM. The sensor showed good selectivity, long-term stability, good repeatability, and within-lab reproducibility. It was also applied for the determination of endosulfan in tomatoes and potatoes, with acceptable recoveries ranging from 87.00 to 96.80%.</p><h3>Graphical abstract</h3><p>Graphical illustration of PANI/Fe-ZnO modified glassy carbon electrode for endosulfan determination in vegetables</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4223 - 4234"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and rapid electrochemical determination of endosulfan in vegetables by polyaniline/Fe-ZnO nanocomposite-modified glassy carbon electrode\",\"authors\":\"Toleshi Teshome, Abera Gure, Shimeles Addisu Kitte, Guta Gonfa\",\"doi\":\"10.1007/s10008-024-06041-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endosulfan is an organochlorine pesticide widely used in agriculture to protect crops such as cotton, soybeans, coffee, tea, cereals, fruits, vegetables, and grains from pests. However, exposure to low concentrations of endosulfan causes harmful effects on humans’ health. Therefore, the determination of endosulfan in food samples by a fast, simple, and cost-effective method is pivotal. In this study, an electrochemical sensor based on a polyaniline/Fe-ZnO-modified glassy carbon electrode (PANI/Fe-ZnO/GCE) was developed for the determination of endosulfan in vegetables. The synthesized nanomaterials were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). PANI/Fe-ZnO/GCE showed remarkable electrocatalytic activity for the determination of endosulfan in vegetables. It also exhibited a good linear response to endosulfan concentrations ranging from 1 to 400 µM. The method displayed a low detection limit (LOD) of 0.003 µM. The sensor showed good selectivity, long-term stability, good repeatability, and within-lab reproducibility. It was also applied for the determination of endosulfan in tomatoes and potatoes, with acceptable recoveries ranging from 87.00 to 96.80%.</p><h3>Graphical abstract</h3><p>Graphical illustration of PANI/Fe-ZnO modified glassy carbon electrode for endosulfan determination in vegetables</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"28 11\",\"pages\":\"4223 - 4234\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06041-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06041-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Simple and rapid electrochemical determination of endosulfan in vegetables by polyaniline/Fe-ZnO nanocomposite-modified glassy carbon electrode
Endosulfan is an organochlorine pesticide widely used in agriculture to protect crops such as cotton, soybeans, coffee, tea, cereals, fruits, vegetables, and grains from pests. However, exposure to low concentrations of endosulfan causes harmful effects on humans’ health. Therefore, the determination of endosulfan in food samples by a fast, simple, and cost-effective method is pivotal. In this study, an electrochemical sensor based on a polyaniline/Fe-ZnO-modified glassy carbon electrode (PANI/Fe-ZnO/GCE) was developed for the determination of endosulfan in vegetables. The synthesized nanomaterials were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). PANI/Fe-ZnO/GCE showed remarkable electrocatalytic activity for the determination of endosulfan in vegetables. It also exhibited a good linear response to endosulfan concentrations ranging from 1 to 400 µM. The method displayed a low detection limit (LOD) of 0.003 µM. The sensor showed good selectivity, long-term stability, good repeatability, and within-lab reproducibility. It was also applied for the determination of endosulfan in tomatoes and potatoes, with acceptable recoveries ranging from 87.00 to 96.80%.
Graphical abstract
Graphical illustration of PANI/Fe-ZnO modified glassy carbon electrode for endosulfan determination in vegetables
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.