多地区互联电力系统的频率调节控制器

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sajjad Malek, Amin Khodabakhshian, Rahmat-Allah Hooshmand
{"title":"多地区互联电力系统的频率调节控制器","authors":"Sajjad Malek,&nbsp;Amin Khodabakhshian,&nbsp;Rahmat-Allah Hooshmand","doi":"10.1049/gtd2.13224","DOIUrl":null,"url":null,"abstract":"<p>By increasing the number of electric vehicles (EVs) to achieve a less carbon environment, not only they consume power from the grid to be charged, but also do they deliver power to the grid, and this can play a significant role in load frequency control. However, EVs take part in frequency regulation based on their state of charge (SoC) which will cause uncertainties. In order to manage these uncertainties, EV aggregator (EVA) concept has been introduced. The EV owner participates in the demand response program provided by the EVA arbitrarily considering her/his requirements. Accordingly, EVA calculates the up and down power reserve for the power system operator. Following any frequency deviation, EVA sends the proper commands to each EV to consume or to inject power to the system. There are also communication delays between different parts, uncertainties, and non-linearities that existed in the power system. To overcome these issues, this study proposes a new robust load frequency controller based on feedback theory and artificial neural network which is designed through the non-linear multi-machine power system. Simulation results on IEEE 39-bus power system show that the proposed controller regulates frequency more desirably in comparison with other methods.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13224","citationCount":"0","resultStr":"{\"title\":\"Frequency regulation controller for multi-area interconnected power system\",\"authors\":\"Sajjad Malek,&nbsp;Amin Khodabakhshian,&nbsp;Rahmat-Allah Hooshmand\",\"doi\":\"10.1049/gtd2.13224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By increasing the number of electric vehicles (EVs) to achieve a less carbon environment, not only they consume power from the grid to be charged, but also do they deliver power to the grid, and this can play a significant role in load frequency control. However, EVs take part in frequency regulation based on their state of charge (SoC) which will cause uncertainties. In order to manage these uncertainties, EV aggregator (EVA) concept has been introduced. The EV owner participates in the demand response program provided by the EVA arbitrarily considering her/his requirements. Accordingly, EVA calculates the up and down power reserve for the power system operator. Following any frequency deviation, EVA sends the proper commands to each EV to consume or to inject power to the system. There are also communication delays between different parts, uncertainties, and non-linearities that existed in the power system. To overcome these issues, this study proposes a new robust load frequency controller based on feedback theory and artificial neural network which is designed through the non-linear multi-machine power system. Simulation results on IEEE 39-bus power system show that the proposed controller regulates frequency more desirably in comparison with other methods.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13224\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13224","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过增加电动汽车(EV)的数量来实现低碳环境,电动汽车不仅要从电网中消耗电能来充电,还要向电网输送电能,这在负荷频率控制中可以发挥重要作用。然而,电动汽车根据其充电状态(SoC)参与频率调节,这将导致不确定性。为了管理这些不确定性,引入了电动汽车聚合器(EVA)概念。电动汽车车主可根据自己的需求任意参与 EVA 提供的需求响应计划。因此,EVA 会为电力系统运营商计算上下功率储备。任何频率偏差发生后,EVA 都会向每辆电动汽车发送适当的指令,要求其消耗或向系统注入电力。此外,电力系统中还存在不同部分之间的通信延迟、不确定性和非线性。为了克服这些问题,本研究提出了一种基于反馈理论和人工神经网络的新型鲁棒负载频率控制器,该控制器是通过非线性多机电力系统设计的。对 IEEE 39 总线电力系统的仿真结果表明,与其他方法相比,所提出的控制器能更理想地调节频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Frequency regulation controller for multi-area interconnected power system

Frequency regulation controller for multi-area interconnected power system

By increasing the number of electric vehicles (EVs) to achieve a less carbon environment, not only they consume power from the grid to be charged, but also do they deliver power to the grid, and this can play a significant role in load frequency control. However, EVs take part in frequency regulation based on their state of charge (SoC) which will cause uncertainties. In order to manage these uncertainties, EV aggregator (EVA) concept has been introduced. The EV owner participates in the demand response program provided by the EVA arbitrarily considering her/his requirements. Accordingly, EVA calculates the up and down power reserve for the power system operator. Following any frequency deviation, EVA sends the proper commands to each EV to consume or to inject power to the system. There are also communication delays between different parts, uncertainties, and non-linearities that existed in the power system. To overcome these issues, this study proposes a new robust load frequency controller based on feedback theory and artificial neural network which is designed through the non-linear multi-machine power system. Simulation results on IEEE 39-bus power system show that the proposed controller regulates frequency more desirably in comparison with other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信