{"title":"考虑到高保真轨道动力学的低能量地月转移自主制导","authors":"Chi Wang, Wei Liu, Yang Gao","doi":"10.1007/s42064-024-0211-y","DOIUrl":null,"url":null,"abstract":"<div><p>This technical note presents a practical approach to low-energy Earth–Moon transfer autonomous guidance considering high-fidelity orbital dynamics. Initially, autonomous guidance, delineated as a trajectory-tracking problem, is addressed within the framework of a predesigned reference trajectory solution, accompanied by empirical trajectory correction maneuver allocation. A series of two-point boundary value problems is subsequently formulated to incorporate guidance velocity increments. An algorithm employing quasilinearization, discretization, and recursion is proposed to address these boundary value problems, which results in enhanced convergence performance compared with traditional differential-correction-based guidance methods. Finally, a Monte Carlo analysis demonstrates the efficacy of the proposed autonomous guidance approach, indicating its potential for onboard applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-energy Earth–Moon transfer autonomous guidance considering high-fidelity orbital dynamics\",\"authors\":\"Chi Wang, Wei Liu, Yang Gao\",\"doi\":\"10.1007/s42064-024-0211-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This technical note presents a practical approach to low-energy Earth–Moon transfer autonomous guidance considering high-fidelity orbital dynamics. Initially, autonomous guidance, delineated as a trajectory-tracking problem, is addressed within the framework of a predesigned reference trajectory solution, accompanied by empirical trajectory correction maneuver allocation. A series of two-point boundary value problems is subsequently formulated to incorporate guidance velocity increments. An algorithm employing quasilinearization, discretization, and recursion is proposed to address these boundary value problems, which results in enhanced convergence performance compared with traditional differential-correction-based guidance methods. Finally, a Monte Carlo analysis demonstrates the efficacy of the proposed autonomous guidance approach, indicating its potential for onboard applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0211-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0211-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Low-energy Earth–Moon transfer autonomous guidance considering high-fidelity orbital dynamics
This technical note presents a practical approach to low-energy Earth–Moon transfer autonomous guidance considering high-fidelity orbital dynamics. Initially, autonomous guidance, delineated as a trajectory-tracking problem, is addressed within the framework of a predesigned reference trajectory solution, accompanied by empirical trajectory correction maneuver allocation. A series of two-point boundary value problems is subsequently formulated to incorporate guidance velocity increments. An algorithm employing quasilinearization, discretization, and recursion is proposed to address these boundary value problems, which results in enhanced convergence performance compared with traditional differential-correction-based guidance methods. Finally, a Monte Carlo analysis demonstrates the efficacy of the proposed autonomous guidance approach, indicating its potential for onboard applications.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.