固体废弃物与钢纤维复合材料对混凝土力学性能的改性效果及机理研究

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingming Zhao, Li Chen, Xiaoyu Wang, Shengru Zhang, Fan Li
{"title":"固体废弃物与钢纤维复合材料对混凝土力学性能的改性效果及机理研究","authors":"Qingming Zhao, Li Chen, Xiaoyu Wang, Shengru Zhang, Fan Li","doi":"10.3389/fmats.2024.1431648","DOIUrl":null,"url":null,"abstract":"To promote the use of solid waste in concrete production and solve the problem of secondary pollution caused by a large amount of solid waste, the four-factor and four-level orthogonal test method was used to investigate the different replacement rates of coal gangue (CG) ceramics (15%, 20%, 25%, and 30%), coal gangue ceramic sand (CGS) (10%, 15%, 20%, and 25%), fly ash (FA) (10%, 15%, 20%, and 25%), and steel fiber (SF) content (0.30%, 0.60%, 0.90%, and 1.2). By using range analysis, variance analysis, matrix analysis, and regression analysis, the prediction models of primary and secondary factors, optimal dosage, and strength under different factor levels were obtained. The microstructure and strengthening mechanisms of different materials were analyzed by scanning electron microscopy (SEM). The results show that the optimal combination of the CG substitution rate is 30%, CGS substitution rate is 15%, SF content is 1.2%, and FA substitution rate is 10% for cube compressive strength. For the splitting tensile strength, the optimal combination is a CG substitution rate of 30%, CGS substitution rate of 25%, SF content of 1.2%, and FA substitution rate of 10%. The resulting strength prediction model has high accuracy, which can predict the strength within the range selected by the orthogonal test in this paper and provide a reference for the application of steel fibers and solid waste in concrete, which contributes to the energy conservation and emission reduction in the construction industry.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the modification effect and mechanism of composite solid waste and steel fiber on the mechanical properties of concrete\",\"authors\":\"Qingming Zhao, Li Chen, Xiaoyu Wang, Shengru Zhang, Fan Li\",\"doi\":\"10.3389/fmats.2024.1431648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To promote the use of solid waste in concrete production and solve the problem of secondary pollution caused by a large amount of solid waste, the four-factor and four-level orthogonal test method was used to investigate the different replacement rates of coal gangue (CG) ceramics (15%, 20%, 25%, and 30%), coal gangue ceramic sand (CGS) (10%, 15%, 20%, and 25%), fly ash (FA) (10%, 15%, 20%, and 25%), and steel fiber (SF) content (0.30%, 0.60%, 0.90%, and 1.2). By using range analysis, variance analysis, matrix analysis, and regression analysis, the prediction models of primary and secondary factors, optimal dosage, and strength under different factor levels were obtained. The microstructure and strengthening mechanisms of different materials were analyzed by scanning electron microscopy (SEM). The results show that the optimal combination of the CG substitution rate is 30%, CGS substitution rate is 15%, SF content is 1.2%, and FA substitution rate is 10% for cube compressive strength. For the splitting tensile strength, the optimal combination is a CG substitution rate of 30%, CGS substitution rate of 25%, SF content of 1.2%, and FA substitution rate of 10%. The resulting strength prediction model has high accuracy, which can predict the strength within the range selected by the orthogonal test in this paper and provide a reference for the application of steel fibers and solid waste in concrete, which contributes to the energy conservation and emission reduction in the construction industry.\",\"PeriodicalId\":12524,\"journal\":{\"name\":\"Frontiers in Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3389/fmats.2024.1431648\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1431648","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为促进固体废弃物在混凝土生产中的利用,解决大量固体废弃物造成的二次污染问题,采用四因素四水平正交试验方法,研究了煤矸石(CG)陶瓷(15%、20%、25%、30%)、煤矸石陶粒砂(CGS)(10%、15%、20%、25%)、粉煤灰(FA)(10%、15%、20%、25%)、钢纤维(SF)含量(0.30%、0.60%、0.90% 和 1.2)。通过范围分析、方差分析、矩阵分析和回归分析,得到了不同因子水平下的主次因子、最佳用量和强度的预测模型。通过扫描电子显微镜(SEM)分析了不同材料的微观结构和强化机理。结果表明,对于立方体抗压强度,CG 替代率为 30%、CGS 替代率为 15%、SF 含量为 1.2%、FA 替代率为 10%的最佳组合。对于劈裂抗拉强度,最佳组合是 CG 替代率为 30%,CGS 替代率为 25%,SF 含量为 1.2%,FA 替代率为 10%。由此得出的强度预测模型具有较高的准确性,可以在本文正交试验选定的范围内预测强度,为钢纤维和固体废弃物在混凝土中的应用提供了参考,为建筑行业的节能减排做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the modification effect and mechanism of composite solid waste and steel fiber on the mechanical properties of concrete
To promote the use of solid waste in concrete production and solve the problem of secondary pollution caused by a large amount of solid waste, the four-factor and four-level orthogonal test method was used to investigate the different replacement rates of coal gangue (CG) ceramics (15%, 20%, 25%, and 30%), coal gangue ceramic sand (CGS) (10%, 15%, 20%, and 25%), fly ash (FA) (10%, 15%, 20%, and 25%), and steel fiber (SF) content (0.30%, 0.60%, 0.90%, and 1.2). By using range analysis, variance analysis, matrix analysis, and regression analysis, the prediction models of primary and secondary factors, optimal dosage, and strength under different factor levels were obtained. The microstructure and strengthening mechanisms of different materials were analyzed by scanning electron microscopy (SEM). The results show that the optimal combination of the CG substitution rate is 30%, CGS substitution rate is 15%, SF content is 1.2%, and FA substitution rate is 10% for cube compressive strength. For the splitting tensile strength, the optimal combination is a CG substitution rate of 30%, CGS substitution rate of 25%, SF content of 1.2%, and FA substitution rate of 10%. The resulting strength prediction model has high accuracy, which can predict the strength within the range selected by the orthogonal test in this paper and provide a reference for the application of steel fibers and solid waste in concrete, which contributes to the energy conservation and emission reduction in the construction industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Materials
Frontiers in Materials Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
6.20%
发文量
749
审稿时长
12 weeks
期刊介绍: Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide. Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信