利用等离子体增强化学气相沉积优化 NH3:SiH4 气体比例以改善 SiNx:H 薄膜的光学特性

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Alamgeer, Hasnain Yousuf, Muhammad Quddamah Khokhar, Jaljalalul Abedin Jony, Rafi ur Rahman, Syed Azkar-ul Hassan, Youngkuk Kim, Duy Phong Pham, Sangheon Park, Junsin Yi
{"title":"利用等离子体增强化学气相沉积优化 NH3:SiH4 气体比例以改善 SiNx:H 薄膜的光学特性","authors":"Alamgeer,&nbsp;Hasnain Yousuf,&nbsp;Muhammad Quddamah Khokhar,&nbsp;Jaljalalul Abedin Jony,&nbsp;Rafi ur Rahman,&nbsp;Syed Azkar-ul Hassan,&nbsp;Youngkuk Kim,&nbsp;Duy Phong Pham,&nbsp;Sangheon Park,&nbsp;Junsin Yi","doi":"10.1002/ente.202401037","DOIUrl":null,"url":null,"abstract":"<p>In this article, we enhance the optical properties of hydrogenated silicon nitride (SiN<sub><i>x</i></sub>:H) thin film by optimization of deposition conditions using plasma-enhanced chemical vapor deposition (PECVD). Specifically, the impact of varying NH<sub>3</sub>:SiH<sub>4</sub> gas ratios (GRs) on the optical and structural properties of the SiNx:H film has been investigated. A ratio of 1.2 results in an optimal refractive index of 2.05, a thickness of 75.60 nm, and a deposition rate of 1.01 nm s<sup>−1</sup>, achieving the highest optical transmittance of 92.63% at 350 °C. Lower ratios, such as 0.5, produce higher refractive indices up to 2.43 but with reduced transmittance and thinner films (53.67 nm at 84.43% transmittance). The bandgap of GR 1.2 at 350 °C is also calculated as 3.23 eV using Tauc's plot. Fourier transform infrared spectroscopy analysis shows significant variations in Si<span></span>H hydrogen bonding configurations at different temperatures, affecting Si<span></span>H and SiN<span></span>H bond densities. These are crucial for understanding the films’ electronic and optical behaviors, with the highest hydrogen content for Si<span></span>H noted at 3.30 × 10<sup>22</sup> cm<sup>−3</sup> at 350 °C. This research provides a detailed understanding of how precise control over GRs during PECVD can fine-tune SiN<sub><i>x</i></sub> film properties, offering guidelines for producing high-quality SiN<sub><i>x</i></sub>:H layer.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Optical Properties of SiNx:H Thin Film by Optimizing NH3:SiH4 Gas Ratio Using Plasma-Enhanced Chemical Vapor Deposition\",\"authors\":\"Alamgeer,&nbsp;Hasnain Yousuf,&nbsp;Muhammad Quddamah Khokhar,&nbsp;Jaljalalul Abedin Jony,&nbsp;Rafi ur Rahman,&nbsp;Syed Azkar-ul Hassan,&nbsp;Youngkuk Kim,&nbsp;Duy Phong Pham,&nbsp;Sangheon Park,&nbsp;Junsin Yi\",\"doi\":\"10.1002/ente.202401037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we enhance the optical properties of hydrogenated silicon nitride (SiN<sub><i>x</i></sub>:H) thin film by optimization of deposition conditions using plasma-enhanced chemical vapor deposition (PECVD). Specifically, the impact of varying NH<sub>3</sub>:SiH<sub>4</sub> gas ratios (GRs) on the optical and structural properties of the SiNx:H film has been investigated. A ratio of 1.2 results in an optimal refractive index of 2.05, a thickness of 75.60 nm, and a deposition rate of 1.01 nm s<sup>−1</sup>, achieving the highest optical transmittance of 92.63% at 350 °C. Lower ratios, such as 0.5, produce higher refractive indices up to 2.43 but with reduced transmittance and thinner films (53.67 nm at 84.43% transmittance). The bandgap of GR 1.2 at 350 °C is also calculated as 3.23 eV using Tauc's plot. Fourier transform infrared spectroscopy analysis shows significant variations in Si<span></span>H hydrogen bonding configurations at different temperatures, affecting Si<span></span>H and SiN<span></span>H bond densities. These are crucial for understanding the films’ electronic and optical behaviors, with the highest hydrogen content for Si<span></span>H noted at 3.30 × 10<sup>22</sup> cm<sup>−3</sup> at 350 °C. This research provides a detailed understanding of how precise control over GRs during PECVD can fine-tune SiN<sub><i>x</i></sub> film properties, offering guidelines for producing high-quality SiN<sub><i>x</i></sub>:H layer.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用等离子体增强化学气相沉积(PECVD)技术,通过优化沉积条件来提高氢化氮化硅(SiNx:H)薄膜的光学特性。具体来说,我们研究了不同的 NH3:SiH4 气体比 (GRs) 对 SiNx:H 薄膜光学和结构特性的影响。1.2 的气体比可获得 2.05 的最佳折射率、75.60 nm 的厚度和 1.01 nm s-1 的沉积速率,在 350 °C 时可获得 92.63% 的最高光学透过率。更低的比率(如 0.5)可产生更高的折射率,最高可达 2.43,但透射率会降低,薄膜也会变薄(53.67 nm,透射率为 84.43%)。根据陶克曲线图,还可以计算出 350 °C 时 GR 1.2 的带隙为 3.23 eV。傅立叶变换红外光谱分析显示,在不同温度下,SiH 氢键构型会发生显著变化,从而影响 SiH 和 SiNH 键密度。这些对于理解薄膜的电子和光学行为至关重要,在 350 °C 时,SiH 的氢含量最高,达到 3.30 × 1022 cm-3。这项研究详细揭示了在 PECVD 过程中精确控制 GRs 如何微调 SiNx 薄膜特性,为生产高质量的 SiNx:H 层提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving the Optical Properties of SiNx:H Thin Film by Optimizing NH3:SiH4 Gas Ratio Using Plasma-Enhanced Chemical Vapor Deposition

Improving the Optical Properties of SiNx:H Thin Film by Optimizing NH3:SiH4 Gas Ratio Using Plasma-Enhanced Chemical Vapor Deposition

In this article, we enhance the optical properties of hydrogenated silicon nitride (SiNx:H) thin film by optimization of deposition conditions using plasma-enhanced chemical vapor deposition (PECVD). Specifically, the impact of varying NH3:SiH4 gas ratios (GRs) on the optical and structural properties of the SiNx:H film has been investigated. A ratio of 1.2 results in an optimal refractive index of 2.05, a thickness of 75.60 nm, and a deposition rate of 1.01 nm s−1, achieving the highest optical transmittance of 92.63% at 350 °C. Lower ratios, such as 0.5, produce higher refractive indices up to 2.43 but with reduced transmittance and thinner films (53.67 nm at 84.43% transmittance). The bandgap of GR 1.2 at 350 °C is also calculated as 3.23 eV using Tauc's plot. Fourier transform infrared spectroscopy analysis shows significant variations in SiH hydrogen bonding configurations at different temperatures, affecting SiH and SiNH bond densities. These are crucial for understanding the films’ electronic and optical behaviors, with the highest hydrogen content for SiH noted at 3.30 × 1022 cm−3 at 350 °C. This research provides a detailed understanding of how precise control over GRs during PECVD can fine-tune SiNx film properties, offering guidelines for producing high-quality SiNx:H layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信