K. Ighilahriz, A. Benchouk, Y. Belkebir, N. Seghir, L. Yahi
{"title":"巨型芽孢杆菌利用农业食品废物生产生物表面活性剂及其在石油污泥采油中的应用","authors":"K. Ighilahriz, A. Benchouk, Y. Belkebir, N. Seghir, L. Yahi","doi":"10.1007/s40201-024-00919-9","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to utilize cost-effective renewable substrates derived from agro-food wastes for the production of biosurfactant by <i>Bacillus megaterium</i>, which was isolated from petroleum sludge. Various agro-food waste materials, namely potato peelings (PP), rice cooking water (RW), biscuit by products (BB), carob pods (CP), and eggshells, were evaluated as nutrient sources for bacterial growth compared to a synthetic medium (SM). The results indicate that the medium comprising carob pods, potato peels supplemented with eggshells promoted the growth of the bacteria and the production of Biosurfactants at a rate of 150 mg/l and 140 mg/l respectively. The biosurfactant exhibited an emulsification index (E24) of 55.23 ± 0.32%, 46.47 ± 3% 43.80 ± 0.4%, 18.33 ± 0.25% and 20 ± 0.11% for PP, CP, SM, BB and RW respectively. The biosurfactant produced from PP had the ability to decrease the surface tension of water from 74 to 39.38 mN/m, with a critical micelle concentration (CMC) of 15 mg/L. The chemical characterization of purified biosurfactant was done using Fourier-transform infrared spectroscopy (FTIR) and Thermal gravity (TG), as well as differential scanning calorimetry (DSC) analysis (TG/DSC), revealing the functional groups and thermostability of the biosurfactant. The DSC spectrum for PP biosurfactant showed the highest thermostability with crystalline temperature (Tc) of 150 °C and melting point (Tm) of 295 °C. The extracted biosurfactant was mixed with petroleum sludge, composed of heavy oil, 40.64 ± 0.19% of extracted oil was obtained after 5 h of reaction while using PP based medium.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"413 - 424"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of biosurfactant by Bacillus megaterieum using agro-food wastes and its application in petroleum sludge oil recovery\",\"authors\":\"K. Ighilahriz, A. Benchouk, Y. Belkebir, N. Seghir, L. Yahi\",\"doi\":\"10.1007/s40201-024-00919-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study is to utilize cost-effective renewable substrates derived from agro-food wastes for the production of biosurfactant by <i>Bacillus megaterium</i>, which was isolated from petroleum sludge. Various agro-food waste materials, namely potato peelings (PP), rice cooking water (RW), biscuit by products (BB), carob pods (CP), and eggshells, were evaluated as nutrient sources for bacterial growth compared to a synthetic medium (SM). The results indicate that the medium comprising carob pods, potato peels supplemented with eggshells promoted the growth of the bacteria and the production of Biosurfactants at a rate of 150 mg/l and 140 mg/l respectively. The biosurfactant exhibited an emulsification index (E24) of 55.23 ± 0.32%, 46.47 ± 3% 43.80 ± 0.4%, 18.33 ± 0.25% and 20 ± 0.11% for PP, CP, SM, BB and RW respectively. The biosurfactant produced from PP had the ability to decrease the surface tension of water from 74 to 39.38 mN/m, with a critical micelle concentration (CMC) of 15 mg/L. The chemical characterization of purified biosurfactant was done using Fourier-transform infrared spectroscopy (FTIR) and Thermal gravity (TG), as well as differential scanning calorimetry (DSC) analysis (TG/DSC), revealing the functional groups and thermostability of the biosurfactant. The DSC spectrum for PP biosurfactant showed the highest thermostability with crystalline temperature (Tc) of 150 °C and melting point (Tm) of 295 °C. The extracted biosurfactant was mixed with petroleum sludge, composed of heavy oil, 40.64 ± 0.19% of extracted oil was obtained after 5 h of reaction while using PP based medium.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 2\",\"pages\":\"413 - 424\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-024-00919-9\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00919-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Production of biosurfactant by Bacillus megaterieum using agro-food wastes and its application in petroleum sludge oil recovery
The objective of this study is to utilize cost-effective renewable substrates derived from agro-food wastes for the production of biosurfactant by Bacillus megaterium, which was isolated from petroleum sludge. Various agro-food waste materials, namely potato peelings (PP), rice cooking water (RW), biscuit by products (BB), carob pods (CP), and eggshells, were evaluated as nutrient sources for bacterial growth compared to a synthetic medium (SM). The results indicate that the medium comprising carob pods, potato peels supplemented with eggshells promoted the growth of the bacteria and the production of Biosurfactants at a rate of 150 mg/l and 140 mg/l respectively. The biosurfactant exhibited an emulsification index (E24) of 55.23 ± 0.32%, 46.47 ± 3% 43.80 ± 0.4%, 18.33 ± 0.25% and 20 ± 0.11% for PP, CP, SM, BB and RW respectively. The biosurfactant produced from PP had the ability to decrease the surface tension of water from 74 to 39.38 mN/m, with a critical micelle concentration (CMC) of 15 mg/L. The chemical characterization of purified biosurfactant was done using Fourier-transform infrared spectroscopy (FTIR) and Thermal gravity (TG), as well as differential scanning calorimetry (DSC) analysis (TG/DSC), revealing the functional groups and thermostability of the biosurfactant. The DSC spectrum for PP biosurfactant showed the highest thermostability with crystalline temperature (Tc) of 150 °C and melting point (Tm) of 295 °C. The extracted biosurfactant was mixed with petroleum sludge, composed of heavy oil, 40.64 ± 0.19% of extracted oil was obtained after 5 h of reaction while using PP based medium.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene