由布朗运动和分数布朗运动驱动的随机半线性微分方程在有限维分布中的贝西科维奇近似自形解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongkun Li, Zhicong Bai
{"title":"由布朗运动和分数布朗运动驱动的随机半线性微分方程在有限维分布中的贝西科维奇近似自形解","authors":"Yongkun Li, Zhicong Bai","doi":"10.1002/mma.10403","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with a stochastic semilinear differential equations driven by both Brownian motion and fractional Brownian motion. Firstly, we establish an inequality for the distance between finite‐dimensional distributions of a random process at two different moments. Then, using the properties of stochastic integrals, fixed point theorems, and based on this inequality, we establish the existence and uniqueness of Besicovich almost automorphic solutions in finite‐dimensional distributions for this type of semilinear equation. Finally, we provide an example to demonstrate the effectiveness of our results. Our results are new to stochastic differential equations driven by Brownian motion or stochastic differential equations driven by fractional Brownian motion.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Besicovitch almost automorphic solutions in finite‐dimensional distributions to stochastic semilinear differential equations driven by both Brownian and fractional Brownian motions\",\"authors\":\"Yongkun Li, Zhicong Bai\",\"doi\":\"10.1002/mma.10403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with a stochastic semilinear differential equations driven by both Brownian motion and fractional Brownian motion. Firstly, we establish an inequality for the distance between finite‐dimensional distributions of a random process at two different moments. Then, using the properties of stochastic integrals, fixed point theorems, and based on this inequality, we establish the existence and uniqueness of Besicovich almost automorphic solutions in finite‐dimensional distributions for this type of semilinear equation. Finally, we provide an example to demonstrate the effectiveness of our results. Our results are new to stochastic differential equations driven by Brownian motion or stochastic differential equations driven by fractional Brownian motion.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是由布朗运动和分数布朗运动驱动的随机半线性微分方程。首先,我们建立了随机过程在两个不同时刻的有限维分布间距离的不等式。然后,利用随机积分的性质、定点定理,并基于这个不等式,我们建立了这类半线性方程在有限维分布中的贝西科维奇近自形解的存在性和唯一性。最后,我们举例说明了我们结果的有效性。我们的结果是布朗运动驱动的随机微分方程或分数布朗运动驱动的随机微分方程的新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Besicovitch almost automorphic solutions in finite‐dimensional distributions to stochastic semilinear differential equations driven by both Brownian and fractional Brownian motions
In this paper, we are concerned with a stochastic semilinear differential equations driven by both Brownian motion and fractional Brownian motion. Firstly, we establish an inequality for the distance between finite‐dimensional distributions of a random process at two different moments. Then, using the properties of stochastic integrals, fixed point theorems, and based on this inequality, we establish the existence and uniqueness of Besicovich almost automorphic solutions in finite‐dimensional distributions for this type of semilinear equation. Finally, we provide an example to demonstrate the effectiveness of our results. Our results are new to stochastic differential equations driven by Brownian motion or stochastic differential equations driven by fractional Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信