基于氧化镓半导体的大体积超快辐射硬光谱闪烁体

A. Datta, H. Mei, A. Lebedinsky, P. Halasyamani, S. Motakef
{"title":"基于氧化镓半导体的大体积超快辐射硬光谱闪烁体","authors":"A. Datta, H. Mei, A. Lebedinsky, P. Halasyamani, S. Motakef","doi":"10.1063/5.0219987","DOIUrl":null,"url":null,"abstract":"We report on the development of the first-ever inorganic radiation-hard moisture-insensitive large volume spectroscopic semiconductor-based scintillator with less than 2 ns decay time and light yields as high as 8000 ph/MeV. Despite extensive research into scintillator materials, the quest for an ideal scintillator combining ultrafast decay times (akin to BaF2 and Yb-doped scintillators such as Lu2O3:Yb), high light yields (exceeding 2000 photons per MeV), spectroscopic capabilities, and exceptional radiation hardness remain unfulfilled. In this study, we demonstrate and report for the first time the viability of large-volume (up to 20 mm thickness) gallium oxide (β-Ga2O3) semiconductor-based scintillators for applications requiring these properties. These β-Ga2O3 scintillators were grown using the fast turnaround (∼2 days) crucible-free optical float zone (FZ) technique. The high light yield and ultrafast decay time of these high-purity n-type semiconductors with free carrier concentration of 6 × 1017 cm−3 are attributed to native defects, specifically oxygen vacancies (VO) and gallium–oxygen vacancy pairs (VGa–VO), generated during optimized FZ growth. The ultrafast decay, along with high light yield, enables excellent timing resolution and high count rate detection for applications like time-of-flight positron emission tomography, physics experiments, and nuclear safety. The radiation hardness of these devices has been documented in a separate publication.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators\",\"authors\":\"A. Datta, H. Mei, A. Lebedinsky, P. Halasyamani, S. Motakef\",\"doi\":\"10.1063/5.0219987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the development of the first-ever inorganic radiation-hard moisture-insensitive large volume spectroscopic semiconductor-based scintillator with less than 2 ns decay time and light yields as high as 8000 ph/MeV. Despite extensive research into scintillator materials, the quest for an ideal scintillator combining ultrafast decay times (akin to BaF2 and Yb-doped scintillators such as Lu2O3:Yb), high light yields (exceeding 2000 photons per MeV), spectroscopic capabilities, and exceptional radiation hardness remain unfulfilled. In this study, we demonstrate and report for the first time the viability of large-volume (up to 20 mm thickness) gallium oxide (β-Ga2O3) semiconductor-based scintillators for applications requiring these properties. These β-Ga2O3 scintillators were grown using the fast turnaround (∼2 days) crucible-free optical float zone (FZ) technique. The high light yield and ultrafast decay time of these high-purity n-type semiconductors with free carrier concentration of 6 × 1017 cm−3 are attributed to native defects, specifically oxygen vacancies (VO) and gallium–oxygen vacancy pairs (VGa–VO), generated during optimized FZ growth. The ultrafast decay, along with high light yield, enables excellent timing resolution and high count rate detection for applications like time-of-flight positron emission tomography, physics experiments, and nuclear safety. The radiation hardness of these devices has been documented in a separate publication.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0219987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了有史以来首次开发出衰变时间小于 2 ns、光产率高达 8000 ph/MeV 的无机辐射硬湿敏大体积光谱半导体闪烁体的情况。尽管对闪烁体材料进行了广泛的研究,但人们仍在寻求一种理想的闪烁体,这种闪烁体应具有超快衰变时间(类似于 BaF2 和掺镱闪烁体,如 Lu2O3:Yb)、高光产率(超过 2000 光子/MeV)、光谱能力和优异的辐射硬度。在本研究中,我们首次展示并报告了大体积(厚度达 20 毫米)氧化镓(β-Ga2O3)半导体闪烁体在需要这些特性的应用中的可行性。这些 β-Ga2O3 闪烁器是利用快速周转(2 天)无坩埚光学浮区(FZ)技术生长的。这些自由载流子浓度为 6 × 1017 cm-3 的高纯度 n 型半导体的高光产率和超快衰减时间归因于优化 FZ 生长过程中产生的原生缺陷,特别是氧空位(VO)和镓氧空位对(VGa-VO)。这种超快衰变和高光产率为飞行时间正电子发射断层扫描、物理实验和核安全等应用提供了出色的时间分辨率和高计数率检测。这些设备的辐射硬度已在另一份出版物中进行了记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators
We report on the development of the first-ever inorganic radiation-hard moisture-insensitive large volume spectroscopic semiconductor-based scintillator with less than 2 ns decay time and light yields as high as 8000 ph/MeV. Despite extensive research into scintillator materials, the quest for an ideal scintillator combining ultrafast decay times (akin to BaF2 and Yb-doped scintillators such as Lu2O3:Yb), high light yields (exceeding 2000 photons per MeV), spectroscopic capabilities, and exceptional radiation hardness remain unfulfilled. In this study, we demonstrate and report for the first time the viability of large-volume (up to 20 mm thickness) gallium oxide (β-Ga2O3) semiconductor-based scintillators for applications requiring these properties. These β-Ga2O3 scintillators were grown using the fast turnaround (∼2 days) crucible-free optical float zone (FZ) technique. The high light yield and ultrafast decay time of these high-purity n-type semiconductors with free carrier concentration of 6 × 1017 cm−3 are attributed to native defects, specifically oxygen vacancies (VO) and gallium–oxygen vacancy pairs (VGa–VO), generated during optimized FZ growth. The ultrafast decay, along with high light yield, enables excellent timing resolution and high count rate detection for applications like time-of-flight positron emission tomography, physics experiments, and nuclear safety. The radiation hardness of these devices has been documented in a separate publication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信