Abdullah Alabdulkarim, Ahmed K. El-Sayed, Abdulaziz S. Alsaif, G. Fares, A. Alhozaimy
{"title":"含有回收轮胎钢纤维的轻质自密实混凝土的性能","authors":"Abdullah Alabdulkarim, Ahmed K. El-Sayed, Abdulaziz S. Alsaif, G. Fares, A. Alhozaimy","doi":"10.3390/buildings14082463","DOIUrl":null,"url":null,"abstract":"The utilization of recycled materials in concrete technology has gained significant attention in recent years, promoting sustainability and resource conservation. This paper investigates the behavior of lightweight self-compacting concrete (LWSCC) with recycled tire steel fibers (RTSFs). The effects of RTSFs on the flowability of the composite material and its density were assessed. The mechanical properties of the developed material were examined and beam tests were performed, aiming to assess its feasibility for structural applications. The compressive and tensile strengths were determined to evaluate the mechanical properties of the developed concrete mixtures. The beam tests were conducted to assess the flexural behavior of the beam specimens. Three different steel fiber contents of 0, 0.5, and 1% volumetric fractions of concrete were used in this study. The test results indicate that incorporating the fibers did not negatively impact the flowability and density of the LWSCC mixtures. In addition, the use of RTSFs enhanced the tensile strength of the developed concrete mixtures, where fibrous concrete showed increases in the splitting tensile strength in the range of 38 to 76% over that of non-fibrous concrete. On the other hand, the compressive strength of the mixtures was not affected. The test beams with RTSFs exhibited improved flexural performance in terms of delaying and controlling cracking, enhancing ultimate load, and increasing ductility. Compared with the control non-fibrous beam, the increases in the cracking load, ultimate load, and ductility index were up to 63.8, 9.3, and 16%, respectively. The test results of the beams were compared with theoretical predictions, and good agreement was found.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of Lightweight Self-Compacting Concrete with Recycled Tire Steel Fibers\",\"authors\":\"Abdullah Alabdulkarim, Ahmed K. El-Sayed, Abdulaziz S. Alsaif, G. Fares, A. Alhozaimy\",\"doi\":\"10.3390/buildings14082463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of recycled materials in concrete technology has gained significant attention in recent years, promoting sustainability and resource conservation. This paper investigates the behavior of lightweight self-compacting concrete (LWSCC) with recycled tire steel fibers (RTSFs). The effects of RTSFs on the flowability of the composite material and its density were assessed. The mechanical properties of the developed material were examined and beam tests were performed, aiming to assess its feasibility for structural applications. The compressive and tensile strengths were determined to evaluate the mechanical properties of the developed concrete mixtures. The beam tests were conducted to assess the flexural behavior of the beam specimens. Three different steel fiber contents of 0, 0.5, and 1% volumetric fractions of concrete were used in this study. The test results indicate that incorporating the fibers did not negatively impact the flowability and density of the LWSCC mixtures. In addition, the use of RTSFs enhanced the tensile strength of the developed concrete mixtures, where fibrous concrete showed increases in the splitting tensile strength in the range of 38 to 76% over that of non-fibrous concrete. On the other hand, the compressive strength of the mixtures was not affected. The test beams with RTSFs exhibited improved flexural performance in terms of delaying and controlling cracking, enhancing ultimate load, and increasing ductility. Compared with the control non-fibrous beam, the increases in the cracking load, ultimate load, and ductility index were up to 63.8, 9.3, and 16%, respectively. The test results of the beams were compared with theoretical predictions, and good agreement was found.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082463\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082463","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Behavior of Lightweight Self-Compacting Concrete with Recycled Tire Steel Fibers
The utilization of recycled materials in concrete technology has gained significant attention in recent years, promoting sustainability and resource conservation. This paper investigates the behavior of lightweight self-compacting concrete (LWSCC) with recycled tire steel fibers (RTSFs). The effects of RTSFs on the flowability of the composite material and its density were assessed. The mechanical properties of the developed material were examined and beam tests were performed, aiming to assess its feasibility for structural applications. The compressive and tensile strengths were determined to evaluate the mechanical properties of the developed concrete mixtures. The beam tests were conducted to assess the flexural behavior of the beam specimens. Three different steel fiber contents of 0, 0.5, and 1% volumetric fractions of concrete were used in this study. The test results indicate that incorporating the fibers did not negatively impact the flowability and density of the LWSCC mixtures. In addition, the use of RTSFs enhanced the tensile strength of the developed concrete mixtures, where fibrous concrete showed increases in the splitting tensile strength in the range of 38 to 76% over that of non-fibrous concrete. On the other hand, the compressive strength of the mixtures was not affected. The test beams with RTSFs exhibited improved flexural performance in terms of delaying and controlling cracking, enhancing ultimate load, and increasing ductility. Compared with the control non-fibrous beam, the increases in the cracking load, ultimate load, and ductility index were up to 63.8, 9.3, and 16%, respectively. The test results of the beams were compared with theoretical predictions, and good agreement was found.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates