评估含有脲醛/环氧微胶囊的活性粉末混凝土的自愈合能力

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Khosravi, Effat Mehrazin, M. Lezgy-Nazargah
{"title":"评估含有脲醛/环氧微胶囊的活性粉末混凝土的自愈合能力","authors":"H. Khosravi, Effat Mehrazin, M. Lezgy-Nazargah","doi":"10.1680/jmacr.23.00302","DOIUrl":null,"url":null,"abstract":"The use of microcapsules as a preservative agent for healing materials has led to a great revolution in the repair of materials. Microcapsules have been used in medicine, agriculture, metallurgy, and mechanics. In civil engineering applications, microcapsules are usually used for the self-healing of concrete, asphalt and cementitious materials. Concrete and cement are widely used in civil engineering and they are distinguished as the predominant construction materials worldwide. The objective of this study is to design and produce urea-formaldehyde microcapsules for the recovery of reactive powder concrete (RPC). The obtained results demonstrated that the RPC specimens containing microcapsules exhibit different behaviors, compared to RPC specimens without microcapsules. For all RPC specimens containing microcapsule, measured values of strengths were lower than specimens without microcapsules. The minimum reduction in the compressive strength was observed in specimens with microcapsules content ranging from 4% to 6% by cement weight. The healing ratio of the compressive strength increased by increasing the weight percentage of microcapsules. Scanning electron microscope (SEM) imaging and energy dispersive spectroscopy (EDS) analysis were used to observe the process of crack healing. The SEM/EDS results showed that cracks are filled by healing products.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"11 24","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of self-healing in reactive powder concrete with urea-formaldehyde/epoxy microcapsules\",\"authors\":\"H. Khosravi, Effat Mehrazin, M. Lezgy-Nazargah\",\"doi\":\"10.1680/jmacr.23.00302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of microcapsules as a preservative agent for healing materials has led to a great revolution in the repair of materials. Microcapsules have been used in medicine, agriculture, metallurgy, and mechanics. In civil engineering applications, microcapsules are usually used for the self-healing of concrete, asphalt and cementitious materials. Concrete and cement are widely used in civil engineering and they are distinguished as the predominant construction materials worldwide. The objective of this study is to design and produce urea-formaldehyde microcapsules for the recovery of reactive powder concrete (RPC). The obtained results demonstrated that the RPC specimens containing microcapsules exhibit different behaviors, compared to RPC specimens without microcapsules. For all RPC specimens containing microcapsule, measured values of strengths were lower than specimens without microcapsules. The minimum reduction in the compressive strength was observed in specimens with microcapsules content ranging from 4% to 6% by cement weight. The healing ratio of the compressive strength increased by increasing the weight percentage of microcapsules. Scanning electron microscope (SEM) imaging and energy dispersive spectroscopy (EDS) analysis were used to observe the process of crack healing. The SEM/EDS results showed that cracks are filled by healing products.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"11 24\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.23.00302\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00302","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用微胶囊作为愈合材料的防腐剂,为材料的修复带来了一场巨大的革命。微胶囊已被用于医药、农业、冶金和机械领域。在土木工程应用中,微胶囊通常用于混凝土、沥青和水泥基材料的自修复。混凝土和水泥在土木工程中应用广泛,是世界上最主要的建筑材料。本研究的目的是设计和生产用于回收活性粉末混凝土(RPC)的脲醛微胶囊。研究结果表明,与不含微胶囊的 RPC 试样相比,含微胶囊的 RPC 试样表现出不同的行为。对于所有含有微胶囊的 RPC 试样,测得的强度值都低于不含微胶囊的试样。在微胶囊含量为水泥重量的 4% 至 6% 的试样中,抗压强度的降低幅度最小。抗压强度的愈合率随着微胶囊重量百分比的增加而增加。扫描电子显微镜(SEM)成像和能量色散光谱(EDS)分析用于观察裂缝愈合的过程。扫描电子显微镜/能量色散光谱分析结果表明,裂纹被愈合产物填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of self-healing in reactive powder concrete with urea-formaldehyde/epoxy microcapsules
The use of microcapsules as a preservative agent for healing materials has led to a great revolution in the repair of materials. Microcapsules have been used in medicine, agriculture, metallurgy, and mechanics. In civil engineering applications, microcapsules are usually used for the self-healing of concrete, asphalt and cementitious materials. Concrete and cement are widely used in civil engineering and they are distinguished as the predominant construction materials worldwide. The objective of this study is to design and produce urea-formaldehyde microcapsules for the recovery of reactive powder concrete (RPC). The obtained results demonstrated that the RPC specimens containing microcapsules exhibit different behaviors, compared to RPC specimens without microcapsules. For all RPC specimens containing microcapsule, measured values of strengths were lower than specimens without microcapsules. The minimum reduction in the compressive strength was observed in specimens with microcapsules content ranging from 4% to 6% by cement weight. The healing ratio of the compressive strength increased by increasing the weight percentage of microcapsules. Scanning electron microscope (SEM) imaging and energy dispersive spectroscopy (EDS) analysis were used to observe the process of crack healing. The SEM/EDS results showed that cracks are filled by healing products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信