Shaista Noor, Fawad Ahmad, Muhammad Imran Khan, Abdallah Shanableh, Shakir Khan, Suryyia Manzoor, Sameh M. Osman, Rafael Luque
{"title":"设计掺锰氧化锌纳米粒子作为氧还原反应中的有效电催化系统","authors":"Shaista Noor, Fawad Ahmad, Muhammad Imran Khan, Abdallah Shanableh, Shakir Khan, Suryyia Manzoor, Sameh M. Osman, Rafael Luque","doi":"10.1002/aoc.7676","DOIUrl":null,"url":null,"abstract":"<p>Fuel cell technologies constitute a clean, reliable, highly efficient, and eco-friendly source of alternative energy generation. However, they still require a reliable and robust catalytic system showing comparative electrochemical activity to precious metal Pt with less cost. In this work, Mn@ZnO NPs were synthesized using a hydrothermal-assisted simple method. Several techniques including SEM, TGA, and XRD were used to confirm the material synthesis. Electrochemical properties were analyzed by using linear sweep voltammetry, chronoamperometry, and cyclic voltammetry. A higher ORR activity in terms of mass activity and current density was observed 133.9 mA/mg as compared to Pt/C (96 mA/mg) and Pd/C (67 mA/mg) under otherwise identical conditions. Mn@ZnO also exhibited excellent current density (1.913 mA cm<sup>−2</sup>), comparable to Pt/C (1.55 mA cm<sup>−2</sup>). Chronoamperometry shows stability for up to 800 s. Comparative studies were conducted in both acidic and basic mediums, with observed higher ORR activity in acidic media.</p>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aoc.7676","citationCount":"0","resultStr":"{\"title\":\"Design of Manganese-Doped Zinc Oxide Nanoparticles as Effective Electrocatalytic System in Oxygen Reduction Reactions\",\"authors\":\"Shaista Noor, Fawad Ahmad, Muhammad Imran Khan, Abdallah Shanableh, Shakir Khan, Suryyia Manzoor, Sameh M. Osman, Rafael Luque\",\"doi\":\"10.1002/aoc.7676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fuel cell technologies constitute a clean, reliable, highly efficient, and eco-friendly source of alternative energy generation. However, they still require a reliable and robust catalytic system showing comparative electrochemical activity to precious metal Pt with less cost. In this work, Mn@ZnO NPs were synthesized using a hydrothermal-assisted simple method. Several techniques including SEM, TGA, and XRD were used to confirm the material synthesis. Electrochemical properties were analyzed by using linear sweep voltammetry, chronoamperometry, and cyclic voltammetry. A higher ORR activity in terms of mass activity and current density was observed 133.9 mA/mg as compared to Pt/C (96 mA/mg) and Pd/C (67 mA/mg) under otherwise identical conditions. Mn@ZnO also exhibited excellent current density (1.913 mA cm<sup>−2</sup>), comparable to Pt/C (1.55 mA cm<sup>−2</sup>). Chronoamperometry shows stability for up to 800 s. Comparative studies were conducted in both acidic and basic mediums, with observed higher ORR activity in acidic media.</p>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aoc.7676\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7676\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7676","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Design of Manganese-Doped Zinc Oxide Nanoparticles as Effective Electrocatalytic System in Oxygen Reduction Reactions
Fuel cell technologies constitute a clean, reliable, highly efficient, and eco-friendly source of alternative energy generation. However, they still require a reliable and robust catalytic system showing comparative electrochemical activity to precious metal Pt with less cost. In this work, Mn@ZnO NPs were synthesized using a hydrothermal-assisted simple method. Several techniques including SEM, TGA, and XRD were used to confirm the material synthesis. Electrochemical properties were analyzed by using linear sweep voltammetry, chronoamperometry, and cyclic voltammetry. A higher ORR activity in terms of mass activity and current density was observed 133.9 mA/mg as compared to Pt/C (96 mA/mg) and Pd/C (67 mA/mg) under otherwise identical conditions. Mn@ZnO also exhibited excellent current density (1.913 mA cm−2), comparable to Pt/C (1.55 mA cm−2). Chronoamperometry shows stability for up to 800 s. Comparative studies were conducted in both acidic and basic mediums, with observed higher ORR activity in acidic media.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.