用于晶圆级集成二维兼容高κ金属栅极的超扁平单晶六方氮化硼

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yani Wang, Chao Zhao, Xin Gao, Liming Zheng, Jun Qian, Xiaoyin Gao, Jiade Li, Junchuan Tang, Congwei Tan, Jiahao Wang, Xuetao Zhu, Jiandong Guo, Zhongfan Liu, Feng Ding, Hailin Peng
{"title":"用于晶圆级集成二维兼容高κ金属栅极的超扁平单晶六方氮化硼","authors":"Yani Wang, Chao Zhao, Xin Gao, Liming Zheng, Jun Qian, Xiaoyin Gao, Jiade Li, Junchuan Tang, Congwei Tan, Jiahao Wang, Xuetao Zhu, Jiandong Guo, Zhongfan Liu, Feng Ding, Hailin Peng","doi":"10.1038/s41563-024-01968-z","DOIUrl":null,"url":null,"abstract":"Hexagonal boron nitride (hBN) has emerged as a promising protection layer for dielectric integration in the next-generation large-scale integrated electronics. Although numerous efforts have been devoted to growing single-crystal hBN film, wafer-scale ultraflat hBN has still not been achieved. Here, we report the epitaxial growth of 4 in. ultraflat single-crystal hBN on Cu0.8Ni0.2(111)/sapphire wafers. The strong coupling between hBN and Cu0.8Ni0.2(111) suppresses the formation of wrinkles and ensures the seamless stitching of parallelly aligned hBN domains, resulting in an ultraflat single-crystal hBN film on a wafer scale. Using the ultraflat hBN as a protective layer, we integrate the wafer-scale ultrathin high-κ dielectrics onto two-dimensional (2D) materials with a damage-free interface. The obtained hBN/HfO2 composite dielectric exhibits an ultralow current leakage (2.36 × 10−6 A cm−2) and an ultrathin equivalent oxide thickness of 0.52 nm, which meets the targets of the International Roadmap for Devices and Systems. Our findings pave the way to the synthesis of ultraflat 2D materials and integration of future 2D electronics. The synthesis of wafer-scale ultraflat single-crystal hexagonal boron nitride film is realized by strong coupling to a Cu0.8Ni0.2(111)/sapphire wafer, providing a potential method for industry-compatible high-κ dielectric integration in two-dimensional electronics.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1495-1501"},"PeriodicalIF":37.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate\",\"authors\":\"Yani Wang, Chao Zhao, Xin Gao, Liming Zheng, Jun Qian, Xiaoyin Gao, Jiade Li, Junchuan Tang, Congwei Tan, Jiahao Wang, Xuetao Zhu, Jiandong Guo, Zhongfan Liu, Feng Ding, Hailin Peng\",\"doi\":\"10.1038/s41563-024-01968-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal boron nitride (hBN) has emerged as a promising protection layer for dielectric integration in the next-generation large-scale integrated electronics. Although numerous efforts have been devoted to growing single-crystal hBN film, wafer-scale ultraflat hBN has still not been achieved. Here, we report the epitaxial growth of 4 in. ultraflat single-crystal hBN on Cu0.8Ni0.2(111)/sapphire wafers. The strong coupling between hBN and Cu0.8Ni0.2(111) suppresses the formation of wrinkles and ensures the seamless stitching of parallelly aligned hBN domains, resulting in an ultraflat single-crystal hBN film on a wafer scale. Using the ultraflat hBN as a protective layer, we integrate the wafer-scale ultrathin high-κ dielectrics onto two-dimensional (2D) materials with a damage-free interface. The obtained hBN/HfO2 composite dielectric exhibits an ultralow current leakage (2.36 × 10−6 A cm−2) and an ultrathin equivalent oxide thickness of 0.52 nm, which meets the targets of the International Roadmap for Devices and Systems. Our findings pave the way to the synthesis of ultraflat 2D materials and integration of future 2D electronics. The synthesis of wafer-scale ultraflat single-crystal hexagonal boron nitride film is realized by strong coupling to a Cu0.8Ni0.2(111)/sapphire wafer, providing a potential method for industry-compatible high-κ dielectric integration in two-dimensional electronics.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 11\",\"pages\":\"1495-1501\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01968-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01968-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

六方氮化硼(hBN)已成为下一代大规模集成电子器件中一种很有前途的介质集成保护层。尽管人们在生长单晶氮化硼薄膜方面做了大量努力,但仍未实现晶圆级超扁平氮化硼。在此,我们报告了在 Cu0.8Ni0.2(111)/sapphire 晶圆上外延生长 4 英寸超扁平单晶 hBN 的情况。hBN 与 Cu0.8Ni0.2(111)之间的强耦合抑制了皱纹的形成,并确保了平行排列的 hBN 域的无缝拼接,从而在晶片尺度上获得了超扁平单晶 hBN 薄膜。利用超平的氢化硼作为保护层,我们将晶圆级超薄高κ电介质整合到二维(2D)材料上,实现了无损伤界面。获得的 hBN/HfO2 复合电介质具有超低漏电流(2.36 × 10-6 A cm-2)和 0.52 nm 的超薄等效氧化物厚度,符合国际器件和系统路线图的目标。我们的研究成果为超扁平二维材料的合成和未来二维电子器件的集成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate

Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate

Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate
Hexagonal boron nitride (hBN) has emerged as a promising protection layer for dielectric integration in the next-generation large-scale integrated electronics. Although numerous efforts have been devoted to growing single-crystal hBN film, wafer-scale ultraflat hBN has still not been achieved. Here, we report the epitaxial growth of 4 in. ultraflat single-crystal hBN on Cu0.8Ni0.2(111)/sapphire wafers. The strong coupling between hBN and Cu0.8Ni0.2(111) suppresses the formation of wrinkles and ensures the seamless stitching of parallelly aligned hBN domains, resulting in an ultraflat single-crystal hBN film on a wafer scale. Using the ultraflat hBN as a protective layer, we integrate the wafer-scale ultrathin high-κ dielectrics onto two-dimensional (2D) materials with a damage-free interface. The obtained hBN/HfO2 composite dielectric exhibits an ultralow current leakage (2.36 × 10−6 A cm−2) and an ultrathin equivalent oxide thickness of 0.52 nm, which meets the targets of the International Roadmap for Devices and Systems. Our findings pave the way to the synthesis of ultraflat 2D materials and integration of future 2D electronics. The synthesis of wafer-scale ultraflat single-crystal hexagonal boron nitride film is realized by strong coupling to a Cu0.8Ni0.2(111)/sapphire wafer, providing a potential method for industry-compatible high-κ dielectric integration in two-dimensional electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信