Xiaoxue Ji, Miao Fan, Di Wang, Siqi Zhang, Shouan Zhang, Yong Liu, Kang Qiao
{"title":"枯草芽孢杆菌 TA-1 的挥发性有机化合物 (VOC) 对黑僵菌具有毒性作用","authors":"Xiaoxue Ji, Miao Fan, Di Wang, Siqi Zhang, Shouan Zhang, Yong Liu, Kang Qiao","doi":"10.1007/s10340-024-01815-9","DOIUrl":null,"url":null,"abstract":"<p>The use of <i>Bacillus</i> volatiles to manage root-knot nematodes (RKNs) is a topic that gained extensive attention because it is safe and environmentally benign. <i>Bacillus velezensis</i> TA-1, isolated from a continuously cropped soil, exhibited strong nematicidal activity against RKNs in vitro and in field conditions. However, it remains poorly understood whether TA-1 volatile organic compounds (VOCs) could be effective against <i>Meloidogyne incognita</i>. In this study, the results of chemotaxis activity test revealed that <i>B. velezensis</i> TA-1 exhibited strong repellent effects on second-stage juveniles (J2s) of <i>M. incognita</i>. In in vitro assays, TA-1 VOCs in a three-compartment Petri dish assay exhibited a mortality rate of 84.1% at 48 h and 92.8% at 72 h to <i>M. incognita</i> J2s. Further evidence revealed that TA-1 VOCs significantly inhibited the gene expression of <i>mpk-1</i>, <i>flp-18</i> and <i>ord-1</i> by 61.0%, 44.8% and 54.5%, respectively. Moreover, TA-1 VOCs increased the content of reactive oxygen species (ROS), resulting in severe oxidative stress and death of nematodes. Results from a double-layered greenhouse experiment indicated that the populations of J2s in the soil and in cucumber roots were notably reduced by TA-1 VOCs compared to the untreated control. Furthermore, eleven VOCs were identified from TA-1 by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS) analysis, of which benzaldehyde, 2-decanol, and 2-undecanone had strong contact nematicidal activities against <i>M. incognita</i> J2s. In addition, benzaldehyde and 2-dodecanone exhibited fumigation effects on <i>M. incognita</i> J2s. Overall, these results demonstrated that TA-1 VOCs exhibited direct contact nematicidal and fumigation activities against RKNs and could be considered as potential biocontrol agents for the control of RKNs.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"46 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatile organic compounds (VOCs) of Bacillus velezensis TA-1 exhibit toxic effects against Meloidogyne incognita\",\"authors\":\"Xiaoxue Ji, Miao Fan, Di Wang, Siqi Zhang, Shouan Zhang, Yong Liu, Kang Qiao\",\"doi\":\"10.1007/s10340-024-01815-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of <i>Bacillus</i> volatiles to manage root-knot nematodes (RKNs) is a topic that gained extensive attention because it is safe and environmentally benign. <i>Bacillus velezensis</i> TA-1, isolated from a continuously cropped soil, exhibited strong nematicidal activity against RKNs in vitro and in field conditions. However, it remains poorly understood whether TA-1 volatile organic compounds (VOCs) could be effective against <i>Meloidogyne incognita</i>. In this study, the results of chemotaxis activity test revealed that <i>B. velezensis</i> TA-1 exhibited strong repellent effects on second-stage juveniles (J2s) of <i>M. incognita</i>. In in vitro assays, TA-1 VOCs in a three-compartment Petri dish assay exhibited a mortality rate of 84.1% at 48 h and 92.8% at 72 h to <i>M. incognita</i> J2s. Further evidence revealed that TA-1 VOCs significantly inhibited the gene expression of <i>mpk-1</i>, <i>flp-18</i> and <i>ord-1</i> by 61.0%, 44.8% and 54.5%, respectively. Moreover, TA-1 VOCs increased the content of reactive oxygen species (ROS), resulting in severe oxidative stress and death of nematodes. Results from a double-layered greenhouse experiment indicated that the populations of J2s in the soil and in cucumber roots were notably reduced by TA-1 VOCs compared to the untreated control. Furthermore, eleven VOCs were identified from TA-1 by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS) analysis, of which benzaldehyde, 2-decanol, and 2-undecanone had strong contact nematicidal activities against <i>M. incognita</i> J2s. In addition, benzaldehyde and 2-dodecanone exhibited fumigation effects on <i>M. incognita</i> J2s. Overall, these results demonstrated that TA-1 VOCs exhibited direct contact nematicidal and fumigation activities against RKNs and could be considered as potential biocontrol agents for the control of RKNs.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01815-9\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01815-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Volatile organic compounds (VOCs) of Bacillus velezensis TA-1 exhibit toxic effects against Meloidogyne incognita
The use of Bacillus volatiles to manage root-knot nematodes (RKNs) is a topic that gained extensive attention because it is safe and environmentally benign. Bacillus velezensis TA-1, isolated from a continuously cropped soil, exhibited strong nematicidal activity against RKNs in vitro and in field conditions. However, it remains poorly understood whether TA-1 volatile organic compounds (VOCs) could be effective against Meloidogyne incognita. In this study, the results of chemotaxis activity test revealed that B. velezensis TA-1 exhibited strong repellent effects on second-stage juveniles (J2s) of M. incognita. In in vitro assays, TA-1 VOCs in a three-compartment Petri dish assay exhibited a mortality rate of 84.1% at 48 h and 92.8% at 72 h to M. incognita J2s. Further evidence revealed that TA-1 VOCs significantly inhibited the gene expression of mpk-1, flp-18 and ord-1 by 61.0%, 44.8% and 54.5%, respectively. Moreover, TA-1 VOCs increased the content of reactive oxygen species (ROS), resulting in severe oxidative stress and death of nematodes. Results from a double-layered greenhouse experiment indicated that the populations of J2s in the soil and in cucumber roots were notably reduced by TA-1 VOCs compared to the untreated control. Furthermore, eleven VOCs were identified from TA-1 by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS) analysis, of which benzaldehyde, 2-decanol, and 2-undecanone had strong contact nematicidal activities against M. incognita J2s. In addition, benzaldehyde and 2-dodecanone exhibited fumigation effects on M. incognita J2s. Overall, these results demonstrated that TA-1 VOCs exhibited direct contact nematicidal and fumigation activities against RKNs and could be considered as potential biocontrol agents for the control of RKNs.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.