混沌量子系统中波动流体力学的出现

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Julian F. Wienand, Simon Karch, Alexander Impertro, Christian Schweizer, Ewan McCulloch, Romain Vasseur, Sarang Gopalakrishnan, Monika Aidelsburger, Immanuel Bloch
{"title":"混沌量子系统中波动流体力学的出现","authors":"Julian F. Wienand, Simon Karch, Alexander Impertro, Christian Schweizer, Ewan McCulloch, Romain Vasseur, Sarang Gopalakrishnan, Monika Aidelsburger, Immanuel Bloch","doi":"10.1038/s41567-024-02611-z","DOIUrl":null,"url":null,"abstract":"A fundamental principle of chaotic quantum dynamics is that local subsystems eventually approach a thermal equilibrium state. The corresponding timescales increase with subsystem size as equilibration is limited by the hydrodynamic build-up of fluctuations on extended length scales. We perform large-scale quantum simulations that monitor particle-number fluctuations in tunable ladders of hard-core bosons and explore how the build-up of fluctuations changes as the system crosses over from integrable to fully chaotic dynamics. Our results indicate that the growth of large-scale fluctuations in chaotic, far-from-equilibrium systems is quantitatively determined by equilibrium transport coefficients, in agreement with the predictions of fluctuating hydrodynamics. This emergent hydrodynamic behaviour of subsystem fluctuations provides a test of fluctuation–dissipation relations far from equilibrium and allows the accurate determination of equilibrium transport coefficients using far-from-equilibrium quantum dynamics. Fluctuating hydrodynamics posits that thermalization in non-equilibrium systems depends on equilibrium transport coefficients. This hypothesis is now tested by exploring the emergence of fluctuations in non-equilibrium dynamics of ultracold atoms.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1732-1737"},"PeriodicalIF":17.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02611-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Emergence of fluctuating hydrodynamics in chaotic quantum systems\",\"authors\":\"Julian F. Wienand, Simon Karch, Alexander Impertro, Christian Schweizer, Ewan McCulloch, Romain Vasseur, Sarang Gopalakrishnan, Monika Aidelsburger, Immanuel Bloch\",\"doi\":\"10.1038/s41567-024-02611-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental principle of chaotic quantum dynamics is that local subsystems eventually approach a thermal equilibrium state. The corresponding timescales increase with subsystem size as equilibration is limited by the hydrodynamic build-up of fluctuations on extended length scales. We perform large-scale quantum simulations that monitor particle-number fluctuations in tunable ladders of hard-core bosons and explore how the build-up of fluctuations changes as the system crosses over from integrable to fully chaotic dynamics. Our results indicate that the growth of large-scale fluctuations in chaotic, far-from-equilibrium systems is quantitatively determined by equilibrium transport coefficients, in agreement with the predictions of fluctuating hydrodynamics. This emergent hydrodynamic behaviour of subsystem fluctuations provides a test of fluctuation–dissipation relations far from equilibrium and allows the accurate determination of equilibrium transport coefficients using far-from-equilibrium quantum dynamics. Fluctuating hydrodynamics posits that thermalization in non-equilibrium systems depends on equilibrium transport coefficients. This hypothesis is now tested by exploring the emergence of fluctuations in non-equilibrium dynamics of ultracold atoms.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 11\",\"pages\":\"1732-1737\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-024-02611-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02611-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02611-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混沌量子动力学的一个基本原理是局部子系统最终接近热平衡状态。相应的时间尺度会随着子系统大小的增加而增加,因为平衡受到扩展长度尺度上波动的流体动力积累的限制。我们进行了大规模量子模拟,监测硬核玻色子可调梯子中的粒子数波动,并探索了当系统从可积分动力学过渡到完全混沌动力学时,波动的积累是如何变化的。我们的研究结果表明,在远离平衡的混沌系统中,大尺度波动的增长是由平衡传输系数定量决定的,这与波动流体力学的预测一致。子系统波动的这种新兴流体力学行为为远离平衡的波动-消散关系提供了检验标准,并允许使用远离平衡量子动力学精确确定平衡输运系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emergence of fluctuating hydrodynamics in chaotic quantum systems

Emergence of fluctuating hydrodynamics in chaotic quantum systems

Emergence of fluctuating hydrodynamics in chaotic quantum systems
A fundamental principle of chaotic quantum dynamics is that local subsystems eventually approach a thermal equilibrium state. The corresponding timescales increase with subsystem size as equilibration is limited by the hydrodynamic build-up of fluctuations on extended length scales. We perform large-scale quantum simulations that monitor particle-number fluctuations in tunable ladders of hard-core bosons and explore how the build-up of fluctuations changes as the system crosses over from integrable to fully chaotic dynamics. Our results indicate that the growth of large-scale fluctuations in chaotic, far-from-equilibrium systems is quantitatively determined by equilibrium transport coefficients, in agreement with the predictions of fluctuating hydrodynamics. This emergent hydrodynamic behaviour of subsystem fluctuations provides a test of fluctuation–dissipation relations far from equilibrium and allows the accurate determination of equilibrium transport coefficients using far-from-equilibrium quantum dynamics. Fluctuating hydrodynamics posits that thermalization in non-equilibrium systems depends on equilibrium transport coefficients. This hypothesis is now tested by exploring the emergence of fluctuations in non-equilibrium dynamics of ultracold atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信