Kang Sun, Yan Huang, Fusai Sun, Qingyu Wang, Yujie Zhou, Jingxue Wang, Qun Zhang, Xusheng Zheng, Fengtao Fan, Yi Luo, Jun Jiang, Hai-Long Jiang
{"title":"金属有机框架的动态结构扭曲增强了太阳能整体水分离能力","authors":"Kang Sun, Yan Huang, Fusai Sun, Qingyu Wang, Yujie Zhou, Jingxue Wang, Qun Zhang, Xusheng Zheng, Fengtao Fan, Yi Luo, Jun Jiang, Hai-Long Jiang","doi":"10.1038/s41557-024-01599-6","DOIUrl":null,"url":null,"abstract":"Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal–organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor–acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting. Solar water splitting holds great promise for hydrogen production but is significantly hindered by rapid recombination of photogenerated charges. Now a metal–organic framework photocatalyst has been shown to undergo, upon photoexcitation, a dynamic excited-state structural twist that greatly suppresses charge recombination to enable efficient photocatalytic overall water splitting.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 10","pages":"1638-1646"},"PeriodicalIF":19.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting\",\"authors\":\"Kang Sun, Yan Huang, Fusai Sun, Qingyu Wang, Yujie Zhou, Jingxue Wang, Qun Zhang, Xusheng Zheng, Fengtao Fan, Yi Luo, Jun Jiang, Hai-Long Jiang\",\"doi\":\"10.1038/s41557-024-01599-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal–organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor–acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting. Solar water splitting holds great promise for hydrogen production but is significantly hindered by rapid recombination of photogenerated charges. Now a metal–organic framework photocatalyst has been shown to undergo, upon photoexcitation, a dynamic excited-state structural twist that greatly suppresses charge recombination to enable efficient photocatalytic overall water splitting.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"16 10\",\"pages\":\"1638-1646\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01599-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01599-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting
Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal–organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor–acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting. Solar water splitting holds great promise for hydrogen production but is significantly hindered by rapid recombination of photogenerated charges. Now a metal–organic framework photocatalyst has been shown to undergo, upon photoexcitation, a dynamic excited-state structural twist that greatly suppresses charge recombination to enable efficient photocatalytic overall water splitting.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.