通过单原子纳米酶的原子对工程提高过氧化物酶样活性

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li
{"title":"通过单原子纳米酶的原子对工程提高过氧化物酶样活性","authors":"Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li","doi":"10.1038/s41467-024-51022-4","DOIUrl":null,"url":null,"abstract":"<p>Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N<sub>4</sub> sites as catalytic sites and Zn-N<sub>4</sub>Cl<sub>1</sub> sites as catalytic regulator. The Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators effectively boost the peroxidase-like activities of Zn-N<sub>4</sub> catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators facilitate the adsorption of <sup>*</sup>H<sub>2</sub>O<sub>2</sub> and re-exposure of Zn-N<sub>4</sub> catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity\",\"authors\":\"Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li\",\"doi\":\"10.1038/s41467-024-51022-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N<sub>4</sub> sites as catalytic sites and Zn-N<sub>4</sub>Cl<sub>1</sub> sites as catalytic regulator. The Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators effectively boost the peroxidase-like activities of Zn-N<sub>4</sub> catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators facilitate the adsorption of <sup>*</sup>H<sub>2</sub>O<sub>2</sub> and re-exposure of Zn-N<sub>4</sub> catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51022-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51022-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

构建原子对工程并提高金属单原子纳米酶(SAzyme)的活性意义重大,但极具挑战性。在此,我们设计了Zn-SA/CNCl SAzyme的原子对工程,同时构建了Zn-N4位点作为催化位点和Zn-N4Cl1位点作为催化调节剂。与不含 Zn-N4Cl1 催化调节剂的 Zn-SA/CN SAzyme 相比,Zn-N4 催化位点的过氧化物酶样活性得到了有效提高,最大反应速度、催化常数和催化效率分别提高了 346 倍、1496 倍和 133 倍。Zn-SA/CNCl SAzyme 具有优异的过氧化物酶样活性,能有效抑制肿瘤细胞在体外和体内的生长。密度泛函理论(DFT)计算表明,Zn-N4Cl1催化调节剂有利于*H2O2的吸附和Zn-N4催化位点的再暴露,从而提高了反应速率。这项工作为通过原子对工程改善金属 SAzyme 的过氧化物酶样活性提供了一种合理有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity

Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity

Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信