Steven T. Brantley, O. Stribling Stuber, Dakota L. Holder, R. Scott Taylor
{"title":"火灾排斥改变了森林蒸散作用:长叶松林地的综合水预算分析","authors":"Steven T. Brantley, O. Stribling Stuber, Dakota L. Holder, R. Scott Taylor","doi":"10.1002/ecm.1623","DOIUrl":null,"url":null,"abstract":"<p>Forests are critical to water resources, but high evapotranspiration (ET) can reduce water yield. Thinning and prescribed fire reduce forest density and often reduce ET, promoting higher water yield. However, results from such treatments have been inconsistent, possibly because of unknown interactions among individual ET components. We compare water budget components of longleaf pine (<i>Pinus palustris</i> Mill.) woodlands with frequent prescribed fire to the water budget components of fire-excluded stands. We hypothesized that fire exclusion would result in higher ET due to increased midstory transpiration (<i>E</i><sub>t</sub>) and interception (<i>E</i><sub>i</sub>), and higher evaporation from litter (<i>I</i><sub>litter</sub>). Reference plots were burned every two years while treatment plots had fire excluded for 15–20 years. Fire treatments were repeated in two sites representing a soil moisture gradient, noted as mesic and xeric. We measured woody <i>E</i><sub>t</sub> using sap flux, and we modeled groundcover <i>E</i><sub>t</sub> using physiological models. We measured <i>E</i><sub>i</sub> of canopy and groundcover layers, modeled <i>E</i><sub>s</sub> litter biomass, and constructed a total component-based water budget for each site and treatment. Compared with reference plots, midstory <i>E</i><sub>t</sub> was 300%–800% higher in fire exclusion plots. Groundcover <i>E</i><sub>t</sub> was ~80% less than reference treatments, countering the effects of midstory growth on total ET. Stand <i>E</i><sub>i</sub> followed similar trends, with groundcover <i>E</i><sub>i</sub> in reference plots countering the effects of midstory and litter <i>E</i><sub>i</sub> in fire exclusion plots. As expected, total ET in the xeric site was 18% higher in fire exclusion plots. However, ET in the mesic site was 16% lower in the fire exclusion plots due to high groundcover <i>E</i><sub>t</sub> and <i>E</i><sub>i</sub> in reference plots. Thus, our results show that fire exclusion changes total forest ET, but the size and direction of the effect vary depending on the balance between midstory and groundcover transpiration and interception. These results highlight the importance of groundcover in ecosystem function in low-density forests and may help explain inconsistent results from studies of water yields following thinning and fire. While prescribed fire is a valuable tool in forest management, we suggest that the effects of fire on ET are complex and require careful accounting of all water fluxes within a forest ecosystem.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1623","citationCount":"0","resultStr":"{\"title\":\"Fire exclusion alters forest evapotranspiration: A comprehensive water budget analysis in longleaf pine woodlands\",\"authors\":\"Steven T. Brantley, O. Stribling Stuber, Dakota L. Holder, R. Scott Taylor\",\"doi\":\"10.1002/ecm.1623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forests are critical to water resources, but high evapotranspiration (ET) can reduce water yield. Thinning and prescribed fire reduce forest density and often reduce ET, promoting higher water yield. However, results from such treatments have been inconsistent, possibly because of unknown interactions among individual ET components. We compare water budget components of longleaf pine (<i>Pinus palustris</i> Mill.) woodlands with frequent prescribed fire to the water budget components of fire-excluded stands. We hypothesized that fire exclusion would result in higher ET due to increased midstory transpiration (<i>E</i><sub>t</sub>) and interception (<i>E</i><sub>i</sub>), and higher evaporation from litter (<i>I</i><sub>litter</sub>). Reference plots were burned every two years while treatment plots had fire excluded for 15–20 years. Fire treatments were repeated in two sites representing a soil moisture gradient, noted as mesic and xeric. We measured woody <i>E</i><sub>t</sub> using sap flux, and we modeled groundcover <i>E</i><sub>t</sub> using physiological models. We measured <i>E</i><sub>i</sub> of canopy and groundcover layers, modeled <i>E</i><sub>s</sub> litter biomass, and constructed a total component-based water budget for each site and treatment. Compared with reference plots, midstory <i>E</i><sub>t</sub> was 300%–800% higher in fire exclusion plots. Groundcover <i>E</i><sub>t</sub> was ~80% less than reference treatments, countering the effects of midstory growth on total ET. Stand <i>E</i><sub>i</sub> followed similar trends, with groundcover <i>E</i><sub>i</sub> in reference plots countering the effects of midstory and litter <i>E</i><sub>i</sub> in fire exclusion plots. As expected, total ET in the xeric site was 18% higher in fire exclusion plots. However, ET in the mesic site was 16% lower in the fire exclusion plots due to high groundcover <i>E</i><sub>t</sub> and <i>E</i><sub>i</sub> in reference plots. Thus, our results show that fire exclusion changes total forest ET, but the size and direction of the effect vary depending on the balance between midstory and groundcover transpiration and interception. These results highlight the importance of groundcover in ecosystem function in low-density forests and may help explain inconsistent results from studies of water yields following thinning and fire. While prescribed fire is a valuable tool in forest management, we suggest that the effects of fire on ET are complex and require careful accounting of all water fluxes within a forest ecosystem.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"94 4\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1623\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1623\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1623","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Fire exclusion alters forest evapotranspiration: A comprehensive water budget analysis in longleaf pine woodlands
Forests are critical to water resources, but high evapotranspiration (ET) can reduce water yield. Thinning and prescribed fire reduce forest density and often reduce ET, promoting higher water yield. However, results from such treatments have been inconsistent, possibly because of unknown interactions among individual ET components. We compare water budget components of longleaf pine (Pinus palustris Mill.) woodlands with frequent prescribed fire to the water budget components of fire-excluded stands. We hypothesized that fire exclusion would result in higher ET due to increased midstory transpiration (Et) and interception (Ei), and higher evaporation from litter (Ilitter). Reference plots were burned every two years while treatment plots had fire excluded for 15–20 years. Fire treatments were repeated in two sites representing a soil moisture gradient, noted as mesic and xeric. We measured woody Et using sap flux, and we modeled groundcover Et using physiological models. We measured Ei of canopy and groundcover layers, modeled Es litter biomass, and constructed a total component-based water budget for each site and treatment. Compared with reference plots, midstory Et was 300%–800% higher in fire exclusion plots. Groundcover Et was ~80% less than reference treatments, countering the effects of midstory growth on total ET. Stand Ei followed similar trends, with groundcover Ei in reference plots countering the effects of midstory and litter Ei in fire exclusion plots. As expected, total ET in the xeric site was 18% higher in fire exclusion plots. However, ET in the mesic site was 16% lower in the fire exclusion plots due to high groundcover Et and Ei in reference plots. Thus, our results show that fire exclusion changes total forest ET, but the size and direction of the effect vary depending on the balance between midstory and groundcover transpiration and interception. These results highlight the importance of groundcover in ecosystem function in low-density forests and may help explain inconsistent results from studies of water yields following thinning and fire. While prescribed fire is a valuable tool in forest management, we suggest that the effects of fire on ET are complex and require careful accounting of all water fluxes within a forest ecosystem.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.