Kun Liu, Deyin Zhao, Lvfan Feng, Zhaoxuan Zhang, Peng Qiu, Xiaoyu Wu, Ruihua Wang, Azad Hussain, Jamol Uzokov, Yanshuo Han
{"title":"通过心血管 CT 成像的机器学习聚类分析揭示斯坦福 B 型主动脉夹层患者的表型异质性","authors":"Kun Liu, Deyin Zhao, Lvfan Feng, Zhaoxuan Zhang, Peng Qiu, Xiaoyu Wu, Ruihua Wang, Azad Hussain, Jamol Uzokov, Yanshuo Han","doi":"10.1016/j.hjc.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Aortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to investigate phenotypic heterogeneity in patients with Stanford type B aortic dissection (TBAD) through machine learning clustering analysis of cardiovascular computed tomography (CT) imaging.</p><p><strong>Methods: </strong>Electronic medical records were collected to extract demographic and clinical features of patients with TBAD. Exclusion criteria ensured homogeneity and clinical relevance of the TBAD cohort. Controls were selected on the basis of age, comorbidity status, and imaging availability. Aortic morphological parameters were extracted from CT angiography and subjected to K-means clustering analysis to identify distinct phenotypes.</p><p><strong>Results: </strong>Clustering analysis revealed three phenotypes of patients with TBAD with significant correlations with population characteristics and dissection rates. This pioneering study used CT-based three-dimensional reconstruction to classify high-risk individuals, demonstrating the potential of machine learning in enhancing diagnostic accuracy and personalized treatment strategies. Recent advancements in machine learning have garnered attention in cardiovascular imaging, particularly in aortic dissection research. These studies leverage various imaging modalities to extract valuable features and information from cardiovascular images, paving the way for more personalized interventions.</p><p><strong>Conclusion: </strong>This study provides insights into the phenotypic heterogeneity of patients with TBAD using machine learning clustering analysis of cardiovascular CT imaging. The identified phenotypes exhibit correlations with population characteristics and dissection rates, highlighting the potential of machine learning in risk stratification and personalized management of aortic dissection. Further research in this field holds promise for improving diagnostic accuracy and treatment outcomes in patients with aortic dissection.</p>","PeriodicalId":55062,"journal":{"name":"Hellenic Journal of Cardiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling phenotypic heterogeneity in stanford type B aortic dissection patients through machine learning clustering analysis of cardiovascular CT imaging.\",\"authors\":\"Kun Liu, Deyin Zhao, Lvfan Feng, Zhaoxuan Zhang, Peng Qiu, Xiaoyu Wu, Ruihua Wang, Azad Hussain, Jamol Uzokov, Yanshuo Han\",\"doi\":\"10.1016/j.hjc.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Aortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to investigate phenotypic heterogeneity in patients with Stanford type B aortic dissection (TBAD) through machine learning clustering analysis of cardiovascular computed tomography (CT) imaging.</p><p><strong>Methods: </strong>Electronic medical records were collected to extract demographic and clinical features of patients with TBAD. Exclusion criteria ensured homogeneity and clinical relevance of the TBAD cohort. Controls were selected on the basis of age, comorbidity status, and imaging availability. Aortic morphological parameters were extracted from CT angiography and subjected to K-means clustering analysis to identify distinct phenotypes.</p><p><strong>Results: </strong>Clustering analysis revealed three phenotypes of patients with TBAD with significant correlations with population characteristics and dissection rates. This pioneering study used CT-based three-dimensional reconstruction to classify high-risk individuals, demonstrating the potential of machine learning in enhancing diagnostic accuracy and personalized treatment strategies. Recent advancements in machine learning have garnered attention in cardiovascular imaging, particularly in aortic dissection research. These studies leverage various imaging modalities to extract valuable features and information from cardiovascular images, paving the way for more personalized interventions.</p><p><strong>Conclusion: </strong>This study provides insights into the phenotypic heterogeneity of patients with TBAD using machine learning clustering analysis of cardiovascular CT imaging. The identified phenotypes exhibit correlations with population characteristics and dissection rates, highlighting the potential of machine learning in risk stratification and personalized management of aortic dissection. Further research in this field holds promise for improving diagnostic accuracy and treatment outcomes in patients with aortic dissection.</p>\",\"PeriodicalId\":55062,\"journal\":{\"name\":\"Hellenic Journal of Cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hellenic Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hjc.2024.08.006\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hellenic Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hjc.2024.08.006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Unraveling phenotypic heterogeneity in stanford type B aortic dissection patients through machine learning clustering analysis of cardiovascular CT imaging.
Objective: Aortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to investigate phenotypic heterogeneity in patients with Stanford type B aortic dissection (TBAD) through machine learning clustering analysis of cardiovascular computed tomography (CT) imaging.
Methods: Electronic medical records were collected to extract demographic and clinical features of patients with TBAD. Exclusion criteria ensured homogeneity and clinical relevance of the TBAD cohort. Controls were selected on the basis of age, comorbidity status, and imaging availability. Aortic morphological parameters were extracted from CT angiography and subjected to K-means clustering analysis to identify distinct phenotypes.
Results: Clustering analysis revealed three phenotypes of patients with TBAD with significant correlations with population characteristics and dissection rates. This pioneering study used CT-based three-dimensional reconstruction to classify high-risk individuals, demonstrating the potential of machine learning in enhancing diagnostic accuracy and personalized treatment strategies. Recent advancements in machine learning have garnered attention in cardiovascular imaging, particularly in aortic dissection research. These studies leverage various imaging modalities to extract valuable features and information from cardiovascular images, paving the way for more personalized interventions.
Conclusion: This study provides insights into the phenotypic heterogeneity of patients with TBAD using machine learning clustering analysis of cardiovascular CT imaging. The identified phenotypes exhibit correlations with population characteristics and dissection rates, highlighting the potential of machine learning in risk stratification and personalized management of aortic dissection. Further research in this field holds promise for improving diagnostic accuracy and treatment outcomes in patients with aortic dissection.
期刊介绍:
The Hellenic Journal of Cardiology (International Edition, ISSN 1109-9666) is the official journal of the Hellenic Society of Cardiology and aims to publish high-quality articles on all aspects of cardiovascular medicine. A primary goal is to publish in each issue a number of original articles related to clinical and basic research. Many of these will be accompanied by invited editorial comments.
Hot topics, such as molecular cardiology, and innovative cardiac imaging and electrophysiological mapping techniques, will appear frequently in the journal in the form of invited expert articles or special reports. The Editorial Committee also attaches great importance to subjects related to continuing medical education, the implementation of guidelines and cost effectiveness in cardiology.