{"title":"计算随机种群模型的随机时移分布。","authors":"Dylan Morris, John Maclean, Andrew J Black","doi":"10.1007/s00285-024-02132-6","DOIUrl":null,"url":null,"abstract":"<p><p>Even in large systems, the effect of noise arising from when populations are initially small can persist to be measurable on the macroscale. A deterministic approximation to a stochastic model will fail to capture this effect, but it can be accurately approximated by including an additional random time-shift to the initial conditions. We present a efficient numerical method to compute this time-shift distribution for a large class of stochastic models. The method relies on differentiation of certain functional equations, which we show can be effectively automated by deriving rules for different types of model rates that arise commonly when mass-action mixing is assumed. Explicit computation of the time-shift distribution can be used to build a practical tool for the efficient generation of macroscopic trajectories of stochastic population models, without the need for costly stochastic simulations. Full code is provided to implement the calculations and we demonstrate the method on an epidemic model and a model of within-host viral dynamics.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 3","pages":"33"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319395/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computation of random time-shift distributions for stochastic population models.\",\"authors\":\"Dylan Morris, John Maclean, Andrew J Black\",\"doi\":\"10.1007/s00285-024-02132-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Even in large systems, the effect of noise arising from when populations are initially small can persist to be measurable on the macroscale. A deterministic approximation to a stochastic model will fail to capture this effect, but it can be accurately approximated by including an additional random time-shift to the initial conditions. We present a efficient numerical method to compute this time-shift distribution for a large class of stochastic models. The method relies on differentiation of certain functional equations, which we show can be effectively automated by deriving rules for different types of model rates that arise commonly when mass-action mixing is assumed. Explicit computation of the time-shift distribution can be used to build a practical tool for the efficient generation of macroscopic trajectories of stochastic population models, without the need for costly stochastic simulations. Full code is provided to implement the calculations and we demonstrate the method on an epidemic model and a model of within-host viral dynamics.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"89 3\",\"pages\":\"33\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319395/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02132-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02132-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Computation of random time-shift distributions for stochastic population models.
Even in large systems, the effect of noise arising from when populations are initially small can persist to be measurable on the macroscale. A deterministic approximation to a stochastic model will fail to capture this effect, but it can be accurately approximated by including an additional random time-shift to the initial conditions. We present a efficient numerical method to compute this time-shift distribution for a large class of stochastic models. The method relies on differentiation of certain functional equations, which we show can be effectively automated by deriving rules for different types of model rates that arise commonly when mass-action mixing is assumed. Explicit computation of the time-shift distribution can be used to build a practical tool for the efficient generation of macroscopic trajectories of stochastic population models, without the need for costly stochastic simulations. Full code is provided to implement the calculations and we demonstrate the method on an epidemic model and a model of within-host viral dynamics.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.