{"title":"白藜芦醇和紫檀素水芯纳米胶囊的双重组合,用于前列腺癌的综合靶向治疗。","authors":"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan","doi":"10.1080/20415990.2024.2380239","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.<b>Materials & methods:</b> Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, <i>in vitro</i> cytotoxicity, <i>in vivo</i> pharmacokinetic and biodistribution studies.<b>Results:</b> Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.<b>Conclusion:</b> ACNs exhibited high t<sub>1/2</sub> (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"685-698"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415016/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.\",\"authors\":\"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan\",\"doi\":\"10.1080/20415990.2024.2380239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.<b>Materials & methods:</b> Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, <i>in vitro</i> cytotoxicity, <i>in vivo</i> pharmacokinetic and biodistribution studies.<b>Results:</b> Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.<b>Conclusion:</b> ACNs exhibited high t<sub>1/2</sub> (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.</p>\",\"PeriodicalId\":22959,\"journal\":{\"name\":\"Therapeutic delivery\",\"volume\":\" \",\"pages\":\"685-698\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20415990.2024.2380239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2380239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.
Aim: Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.Materials & methods: Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, in vitro cytotoxicity, in vivo pharmacokinetic and biodistribution studies.Results: Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.Conclusion: ACNs exhibited high t1/2 (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.