{"title":"大规模培养 Synechocystis sp. PCC6803 以生产聚(3-羟基丁酸)及其在制造散装和医疗原型中的潜在应用。","authors":"","doi":"10.1016/j.nbt.2024.08.497","DOIUrl":null,"url":null,"abstract":"<div><p>Polyhydroxyalkanoates (PHAs) are biopolymers produced by microorganisms under nutrient limiting conditions and in the presence of excess carbon source. PHAs have gained popularity as a sustainable alternative to traditional plastics. However, large scale production of PHAs is economically challenging due to the relatively high costs of organic carbon. Alternative options include using organisms capable of phototrophic or mixotrophic growth. This study aimed at the production of poly(3-hydroxybutyrate) P(3HB), a type of PHA, at pilot scale using the freshwater cyanobacterium <em>Synechocystis</em> sp. PCC6803. First, to identify optimal conditions for P(3HB) production from <em>Synechocystis</em> sp. PCC6803, different supplemental carbon source concentrations and salinity levels were tested at laboratory scale. The addition of 4 g/L acetate with no added NaCl led to P(3HB) accumulation of 10.7 % dry cell weight on the 28th day of cultivation. Although acetate additions were replicated in an outdoor 400 L serpentine photobioreactor, P(3HB) content was lower, implying uncontrolled conditions impact on biopolymer production efficiency. An optimized P(3HB) extraction methodology was developed to remove pigments, and the biopolymer was characterized and subjected to 3D printing (fused deposition modelling) to confirm its processability. This study thus successfully led to the large-scale production of P(3HB) using sustainable and environmentally friendly cyanobacterial fermentation.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1871678424005314/pdfft?md5=781a9272126ec786cca98da0c99ca0d5&pid=1-s2.0-S1871678424005314-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Large-scale cultivation of Synechocystis sp. PCC6803 for the production of Poly(3-hydroxybutyrate) and its potential applications in the manufacturing of bulk and medical prototypes\",\"authors\":\"\",\"doi\":\"10.1016/j.nbt.2024.08.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyhydroxyalkanoates (PHAs) are biopolymers produced by microorganisms under nutrient limiting conditions and in the presence of excess carbon source. PHAs have gained popularity as a sustainable alternative to traditional plastics. However, large scale production of PHAs is economically challenging due to the relatively high costs of organic carbon. Alternative options include using organisms capable of phototrophic or mixotrophic growth. This study aimed at the production of poly(3-hydroxybutyrate) P(3HB), a type of PHA, at pilot scale using the freshwater cyanobacterium <em>Synechocystis</em> sp. PCC6803. First, to identify optimal conditions for P(3HB) production from <em>Synechocystis</em> sp. PCC6803, different supplemental carbon source concentrations and salinity levels were tested at laboratory scale. The addition of 4 g/L acetate with no added NaCl led to P(3HB) accumulation of 10.7 % dry cell weight on the 28th day of cultivation. Although acetate additions were replicated in an outdoor 400 L serpentine photobioreactor, P(3HB) content was lower, implying uncontrolled conditions impact on biopolymer production efficiency. An optimized P(3HB) extraction methodology was developed to remove pigments, and the biopolymer was characterized and subjected to 3D printing (fused deposition modelling) to confirm its processability. This study thus successfully led to the large-scale production of P(3HB) using sustainable and environmentally friendly cyanobacterial fermentation.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1871678424005314/pdfft?md5=781a9272126ec786cca98da0c99ca0d5&pid=1-s2.0-S1871678424005314-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678424005314\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678424005314","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Large-scale cultivation of Synechocystis sp. PCC6803 for the production of Poly(3-hydroxybutyrate) and its potential applications in the manufacturing of bulk and medical prototypes
Polyhydroxyalkanoates (PHAs) are biopolymers produced by microorganisms under nutrient limiting conditions and in the presence of excess carbon source. PHAs have gained popularity as a sustainable alternative to traditional plastics. However, large scale production of PHAs is economically challenging due to the relatively high costs of organic carbon. Alternative options include using organisms capable of phototrophic or mixotrophic growth. This study aimed at the production of poly(3-hydroxybutyrate) P(3HB), a type of PHA, at pilot scale using the freshwater cyanobacterium Synechocystis sp. PCC6803. First, to identify optimal conditions for P(3HB) production from Synechocystis sp. PCC6803, different supplemental carbon source concentrations and salinity levels were tested at laboratory scale. The addition of 4 g/L acetate with no added NaCl led to P(3HB) accumulation of 10.7 % dry cell weight on the 28th day of cultivation. Although acetate additions were replicated in an outdoor 400 L serpentine photobioreactor, P(3HB) content was lower, implying uncontrolled conditions impact on biopolymer production efficiency. An optimized P(3HB) extraction methodology was developed to remove pigments, and the biopolymer was characterized and subjected to 3D printing (fused deposition modelling) to confirm its processability. This study thus successfully led to the large-scale production of P(3HB) using sustainable and environmentally friendly cyanobacterial fermentation.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.