Xia-Qing Gao, Hai-Long Li, Meng Wang, Chun-Ting Yang, Rong Su, Li-Hua Shao
{"title":"基于网络药理学和分子对接的山奈酚通过靶向AKT/GSK3β通路抑制胃癌细胞的侵袭和转移","authors":"Xia-Qing Gao, Hai-Long Li, Meng Wang, Chun-Ting Yang, Rong Su, Li-Hua Shao","doi":"10.1080/10286020.2024.2387756","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the mechanisms of the inhibitory effect of kaempferol on the invasion and metastasis of gastric cancer (GC) cells through network pharmacology prediction and experimental verification. It identifies core targets via PPI network analysis and finds that kaempferol binds to these targets well. <i>In vitro</i> experiments showed that kaempferol could inhibit the proliferation, colony formation, migration and invasion of GC cells. Western blotting indicated kaempferol may reduce AKT and GSK3β phosphorylation, leading to lower expression of invasion-related genes SRC, MMP9, CXCR4, KDR, and MMP2. Overall, kaempferol may prevent migration and invasion of GC cells via the AKT/GSK3β signaling pathway.</p>","PeriodicalId":15180,"journal":{"name":"Journal of Asian Natural Products Research","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kaempferol inhibited invasion and metastasis of gastric cancer cells by targeting AKT/GSK3β pathway based on network pharmacology and molecular docking.\",\"authors\":\"Xia-Qing Gao, Hai-Long Li, Meng Wang, Chun-Ting Yang, Rong Su, Li-Hua Shao\",\"doi\":\"10.1080/10286020.2024.2387756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the mechanisms of the inhibitory effect of kaempferol on the invasion and metastasis of gastric cancer (GC) cells through network pharmacology prediction and experimental verification. It identifies core targets via PPI network analysis and finds that kaempferol binds to these targets well. <i>In vitro</i> experiments showed that kaempferol could inhibit the proliferation, colony formation, migration and invasion of GC cells. Western blotting indicated kaempferol may reduce AKT and GSK3β phosphorylation, leading to lower expression of invasion-related genes SRC, MMP9, CXCR4, KDR, and MMP2. Overall, kaempferol may prevent migration and invasion of GC cells via the AKT/GSK3β signaling pathway.</p>\",\"PeriodicalId\":15180,\"journal\":{\"name\":\"Journal of Asian Natural Products Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Natural Products Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10286020.2024.2387756\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Natural Products Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10286020.2024.2387756","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Kaempferol inhibited invasion and metastasis of gastric cancer cells by targeting AKT/GSK3β pathway based on network pharmacology and molecular docking.
This study aims to explore the mechanisms of the inhibitory effect of kaempferol on the invasion and metastasis of gastric cancer (GC) cells through network pharmacology prediction and experimental verification. It identifies core targets via PPI network analysis and finds that kaempferol binds to these targets well. In vitro experiments showed that kaempferol could inhibit the proliferation, colony formation, migration and invasion of GC cells. Western blotting indicated kaempferol may reduce AKT and GSK3β phosphorylation, leading to lower expression of invasion-related genes SRC, MMP9, CXCR4, KDR, and MMP2. Overall, kaempferol may prevent migration and invasion of GC cells via the AKT/GSK3β signaling pathway.
期刊介绍:
The Journal of Asian Natural Products Research (JANPR) publishes chemical and pharmaceutical studies in the English language in the field of natural product research on Asian ethnic medicine. The journal publishes work from scientists in Asian countries, e.g. China, Japan, Korea and India, including contributions from other countries concerning natural products of Asia. The journal is chemistry-orientated. Major fields covered are: isolation and structural elucidation of natural constituents (including those for non-medical uses), synthesis and transformation (including biosynthesis and biotransformation) of natural products, pharmacognosy, and allied topics. Biological evaluation of crude extracts are acceptable only as supporting data for pure isolates with well-characterized structures.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymized refereeing by at least two expert referees.