仿生 HA-GO 植入物涂层通过巨噬细胞 M2 极化诱导的骨免疫调节增强骨结合。

IF 3.1 4区 医学 Q2 BIOPHYSICS
Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He
{"title":"仿生 HA-GO 植入物涂层通过巨噬细胞 M2 极化诱导的骨免疫调节增强骨结合。","authors":"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He","doi":"10.1177/22808000241266665","DOIUrl":null,"url":null,"abstract":"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266665"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.\",\"authors\":\"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He\",\"doi\":\"10.1177/22808000241266665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":\"22 \",\"pages\":\"22808000241266665\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000241266665\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000241266665","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞(M1/M2)的促炎/抗炎极化表型可用于预测植入物整合的成功与否。因此,激活和诱导促进组织修复的免疫细胞转化似乎是一种非常有前景的促进骨生成的策略。在之前的一项研究中,通过电泳沉积法将氧化石墨烯-羟基磷灰石(GO-HA)纳米复合材料涂覆在钛植入物上,发现当 GO 含量为 2wt% 时,骨髓间充质干细胞(BMSCs)的成骨分化能力明显增强。然而,GO-HA 纳米复合涂层在改变体内免疫微环境方面的效果仍不明确。本研究基于 GO-HA 介导的巨噬细胞免疫调节,研究了 GO-HA 涂层对成骨的影响。HA-2wt%GO纳米复合涂层具有良好的生物相容性,有利于M2巨噬细胞极化。同时,它们还能显著上调 IL-10(抗炎因子)的表达,下调 TNF-α(促炎因子)的表达。此外,由 M2 巨噬细胞建立的微环境有利于 BMSCs 在体内和体外的成骨。这些研究结果表明,GO-HA 纳米复合涂层是一种很有前景的表面修饰材料。因此,这项研究为开发下一代骨免疫调节生物材料提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.

The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信