空气中的微生物:取样、检测和灭活。

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Saisai Yan, Qing Liu, Bing Liang, Miao Zhang, Wujun Chen, Daijun Zhang, Chao Wang, Dongming Xing
{"title":"空气中的微生物:取样、检测和灭活。","authors":"Saisai Yan, Qing Liu, Bing Liang, Miao Zhang, Wujun Chen, Daijun Zhang, Chao Wang, Dongming Xing","doi":"10.1080/07388551.2024.2377191","DOIUrl":null,"url":null,"abstract":"<p><p>The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-35"},"PeriodicalIF":8.1000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airborne microbes: sampling, detection, and inactivation.\",\"authors\":\"Saisai Yan, Qing Liu, Bing Liang, Miao Zhang, Wujun Chen, Daijun Zhang, Chao Wang, Dongming Xing\",\"doi\":\"10.1080/07388551.2024.2377191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-35\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2024.2377191\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2377191","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类的生活环境是微生物的栖息地,空气中无处不在的微生物对自然界的物质循环产生了重大影响。通过对有益微生物的不断试验,人类从空气中的微生物中受益匪浅。然而,空气中的病原体会危害人类健康,并有可能诱发致命疾病。跟踪空气中的微生物是更好地了解生物气溶胶、利用其潜在优势和降低相关风险的重要前提。尽管技术上的突破使准确监测空气传播病原体的工作取得了重大进展,但由于这些微生物的高变异性和环境扩散性,许多有关它们的谜题仍然没有答案。因此,人们一直在寻求先进的技术和策略,以实现对微生物污染的特殊识别、早期预警和有效根除。本综述全面概述了空气传播微生物的研究现状,重点介绍了采样、检测和灭活方面的最新进展和挑战。特别是详细介绍了收集和及时检测空气中病原体的基本设计原则,以及消除微生物污染和提高室内空气质量的关键因素。此外,还提出了控制空气传播微生物的未来研究方向和前景,以促进将基础研究转化为实际产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Airborne microbes: sampling, detection, and inactivation.

The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信