口腔微生态中变异链球菌和共生链球菌之间的竞争动态和平衡。

IF 6 2区 生物学 Q1 MICROBIOLOGY
Dingwei Ye, Yaqi Liu, Jing Li, Jing Zhou, Jingwei Cao, Yumeng Wu, Xinyue Wang, Yuwen Fang, Xingchen Ye, Jing Zou, Qizhao Ma
{"title":"口腔微生态中变异链球菌和共生链球菌之间的竞争动态和平衡。","authors":"Dingwei Ye, Yaqi Liu, Jing Li, Jing Zhou, Jingwei Cao, Yumeng Wu, Xinyue Wang, Yuwen Fang, Xingchen Ye, Jing Zou, Qizhao Ma","doi":"10.1080/1040841X.2024.2389386","DOIUrl":null,"url":null,"abstract":"<p><p>Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. <i>Streptococcus mutans</i>, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as <i>Streptococcus sanguinis</i>, <i>Streptococcus gordonii</i>, and <i>Streptococcus salivarius</i>, act as primary colonizers and compete with <i>S. mutans</i> for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting <i>S. mutans</i> growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in <i>S. mutans</i> abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and <i>S. mutans</i> in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-12"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive dynamics and balance between <i>Streptococcus mutans</i> and commensal streptococci in oral microecology.\",\"authors\":\"Dingwei Ye, Yaqi Liu, Jing Li, Jing Zhou, Jingwei Cao, Yumeng Wu, Xinyue Wang, Yuwen Fang, Xingchen Ye, Jing Zou, Qizhao Ma\",\"doi\":\"10.1080/1040841X.2024.2389386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. <i>Streptococcus mutans</i>, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as <i>Streptococcus sanguinis</i>, <i>Streptococcus gordonii</i>, and <i>Streptococcus salivarius</i>, act as primary colonizers and compete with <i>S. mutans</i> for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting <i>S. mutans</i> growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in <i>S. mutans</i> abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and <i>S. mutans</i> in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.</p>\",\"PeriodicalId\":10736,\"journal\":{\"name\":\"Critical Reviews in Microbiology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/1040841X.2024.2389386\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2024.2389386","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

龋齿作为一种与生物膜相关的疾病,与牙齿生物膜内微生物生态失调密切相关。除了对口腔健康的影响,口腔内的细菌还可能进入血液,从而增加患细菌性心内膜炎和其他相关疾病的风险。变异链球菌是一种主要的致龋细菌,具有对龋齿发病至关重要的毒力因子。它能粘附在牙齿表面,产生葡聚糖形成生物膜,并将糖代谢成乳酸,这有助于釉质脱矿和龋病的发生。它的酸性和产生细菌素的能力使其具有竞争优势,能够在酸性环境中生长,并在不断变化的口腔微环境中占据主导地位。相比之下,共生链球菌,如血清链球菌、戈登链球菌和唾液链球菌,则是主要的定殖者,在生物膜形成过程中与变异棒状杆菌竞争附着点和营养物质。这种竞争包括产生碱、过氧化物和抗菌物质,从而抑制变异杆菌的生长,维持微生物平衡。这种动态的相互作用影响着口腔微生物群的平衡,一旦发生破坏,微生物的组成就会发生变化,变异杆菌的数量就会迅速增加,从而导致龋齿的发生。因此,了解口腔微生态中共生菌和致病菌之间的动态相互作用对于制定促进口腔健康和预防龋齿的有效策略非常重要。本综述强调了共生菌和变异杆菌在口腔微生态中的作用和竞争性相互作用,强调了维持口腔微生物平衡对健康的重要性,并讨论了这种平衡紊乱对病理的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive dynamics and balance between Streptococcus mutans and commensal streptococci in oral microecology.

Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Microbiology
Critical Reviews in Microbiology 生物-微生物学
CiteScore
14.70
自引率
0.00%
发文量
99
期刊介绍: Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信