{"title":"脂肪酸在鱼苗营养中的重要性。","authors":"Thangaraju Thiruvasagam , Pushparaj Chidambaram , Amit Ranjan , N.B. Komuhi","doi":"10.1016/j.anireprosci.2024.107573","DOIUrl":null,"url":null,"abstract":"<div><p>The nutritional status of broodstock profoundly affects their reproductive performance and offspring survival. Studies on lipids and essential fatty acids in broodstock diets highlight their importance in cell structure, fecundity, fertilization, egg and larval quality, and providing metabolic energy for reproduction. Long-chain polyunsaturated fatty acids (Lc-PUFA) like DHA (22:6 n-3) and EPA (20:5 n-3) are vital for egg and larval development, while arachidonic acid (ARA) produces eicosanoids essential for reproduction. The fatty acid requirements vary by habitat; freshwater fish typically lack ∆12 and ∆15 desaturase enzymes to convert oleic acid into vital polyunsaturated fatty acids like linoleic and linolenic acids but can synthesize linoleic (18:2 n-6) and linolenic (18:3 n-3) into Lc-PUFAs such as EPA, DHA, and ARA through desaturation and elongation, whereas marine teleost cannot. Hence, broodstock feed fatty acid composition must be tailored by incorporating ingredients with a specific fatty acid composition to enhance reproductive performance. This review provides updated information on fatty acid supplementation in broodstock diets to improve reproductive outcomes in commercially important finfish, offering valuable insights for researchers, academicians, hatchery owners, and fish farmers to produce better-quality seeds.</p></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"268 ","pages":"Article 107573"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of fatty acids in fish broodstock nutrition\",\"authors\":\"Thangaraju Thiruvasagam , Pushparaj Chidambaram , Amit Ranjan , N.B. Komuhi\",\"doi\":\"10.1016/j.anireprosci.2024.107573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nutritional status of broodstock profoundly affects their reproductive performance and offspring survival. Studies on lipids and essential fatty acids in broodstock diets highlight their importance in cell structure, fecundity, fertilization, egg and larval quality, and providing metabolic energy for reproduction. Long-chain polyunsaturated fatty acids (Lc-PUFA) like DHA (22:6 n-3) and EPA (20:5 n-3) are vital for egg and larval development, while arachidonic acid (ARA) produces eicosanoids essential for reproduction. The fatty acid requirements vary by habitat; freshwater fish typically lack ∆12 and ∆15 desaturase enzymes to convert oleic acid into vital polyunsaturated fatty acids like linoleic and linolenic acids but can synthesize linoleic (18:2 n-6) and linolenic (18:3 n-3) into Lc-PUFAs such as EPA, DHA, and ARA through desaturation and elongation, whereas marine teleost cannot. Hence, broodstock feed fatty acid composition must be tailored by incorporating ingredients with a specific fatty acid composition to enhance reproductive performance. This review provides updated information on fatty acid supplementation in broodstock diets to improve reproductive outcomes in commercially important finfish, offering valuable insights for researchers, academicians, hatchery owners, and fish farmers to produce better-quality seeds.</p></div>\",\"PeriodicalId\":7880,\"journal\":{\"name\":\"Animal Reproduction Science\",\"volume\":\"268 \",\"pages\":\"Article 107573\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Reproduction Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378432024001647\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024001647","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Significance of fatty acids in fish broodstock nutrition
The nutritional status of broodstock profoundly affects their reproductive performance and offspring survival. Studies on lipids and essential fatty acids in broodstock diets highlight their importance in cell structure, fecundity, fertilization, egg and larval quality, and providing metabolic energy for reproduction. Long-chain polyunsaturated fatty acids (Lc-PUFA) like DHA (22:6 n-3) and EPA (20:5 n-3) are vital for egg and larval development, while arachidonic acid (ARA) produces eicosanoids essential for reproduction. The fatty acid requirements vary by habitat; freshwater fish typically lack ∆12 and ∆15 desaturase enzymes to convert oleic acid into vital polyunsaturated fatty acids like linoleic and linolenic acids but can synthesize linoleic (18:2 n-6) and linolenic (18:3 n-3) into Lc-PUFAs such as EPA, DHA, and ARA through desaturation and elongation, whereas marine teleost cannot. Hence, broodstock feed fatty acid composition must be tailored by incorporating ingredients with a specific fatty acid composition to enhance reproductive performance. This review provides updated information on fatty acid supplementation in broodstock diets to improve reproductive outcomes in commercially important finfish, offering valuable insights for researchers, academicians, hatchery owners, and fish farmers to produce better-quality seeds.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.