嗜卤生物和嗜碱生物在含偶氮染料纺织废水生物修复中的潜力:综述。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1007/s13205-024-04036-0
Gunisha Wadhawan, Anuja Kalra, Anshu Gupta
{"title":"嗜卤生物和嗜碱生物在含偶氮染料纺织废水生物修复中的潜力:综述。","authors":"Gunisha Wadhawan, Anuja Kalra, Anshu Gupta","doi":"10.1007/s13205-024-04036-0","DOIUrl":null,"url":null,"abstract":"<p><p>Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review.\",\"authors\":\"Gunisha Wadhawan, Anuja Kalra, Anshu Gupta\",\"doi\":\"10.1007/s13205-024-04036-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04036-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04036-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于各种健康和环境问题,含偶氮染料的纺织废水在排放前必须进行处理。然而,纺织废水的生物修复是一项挑战,因为它具有碱性和盐分高的特点,一般来说,嗜中性微生物在这种恶劣的环境中无法生长,或者生长效率较低。因此,在使用微生物进行处理之前,必须先进行中和或去除盐分的预处理,这就造成了额外的经济和技术负担。嗜极细菌能够在这种极端条件下生存并显示出去除毒物的能力,而无需进行预处理,因此是一种很有前途的生物修复工具。在嗜极细菌中,嗜盐菌和嗜碱菌天然适应高盐和高 pH 值,在富含盐碱的纺织废水脱色方面具有特殊意义。本综述文章试图概述利用这两类嗜极细菌对偶氮染料和含偶氮染料纺织废水进行生物修复的情况。本文讨论了偶氮染料对人类健康和环境的有害影响。嗜卤嗜碱细菌通过各种适应性来规避极端条件,例如,产生某些酶、在蛋白质水平上进行调节、pH 值平衡和其他结构适应性,这些在本综述中都有重点介绍。嗜碱性细菌和嗜卤细菌不仅能在高 pH 值和高盐浓度条件下维持生存,而且还具有很强的染料去除能力,这些独特的特性使它们成为设计未来生物修复策略的良好候选者,用于治理含碱性、盐分和偶氮染料的工业废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review.

Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review.

Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信