链霉菌属联合体在番茄与花生芽坏死病毒相互作用过程中触发防御/PAMP 基因。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1007/s13205-024-04030-6
A S Rahul Dev, S Harish, G Karthikeyan, M Nivedha, C Sangeetha
{"title":"链霉菌属联合体在番茄与花生芽坏死病毒相互作用过程中触发防御/PAMP 基因。","authors":"A S Rahul Dev, S Harish, G Karthikeyan, M Nivedha, C Sangeetha","doi":"10.1007/s13205-024-04030-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, <i>Streptomyces</i> spp. were isolated, characterized, and the efficacy was tested against <i>Groundnut bud necrosis orthotospovirus</i> (GBNV) in tomato. Among the three inoculation methods viz., pre-, post-, and simultaneous inoculation, tested for antiviral efficacy, pre-inoculation spray of the three <i>Streptomyces</i> spp. viz., <i>Streptomyces mutabilis, Streptomyces rochei,</i> and <i>Streptomyces chrestomyceticus</i> (SAT1, SAT4, and STR2) recorded the least disease severity index (DSI) of GBNV in tomato. In the pot culture, seed treatment of liquid consortium of three <i>Streptomyces</i> spp. @ 2 ml/g of seeds along with seedling dip at 10 ml/lit followed by soil drenching at 10 ml/lit on 7 days after transplanting (DAT) and foliar application at 0.5% on 15 DAT, 30 DAT, and 45 DAT recorded the least GBNV infection of 15% DSI and 16.67% DSI in trial I and II respectively. Besides, under field conditions, the disease incidence was reduced to 14.44% recording a higher yield of 76.67 t/ha in the treated plants against 63.99 t/ha in control. Upregulation of defense genes viz., PR1, PR2, PR6, WRKY, MAPKK, and NPR1 during tripartite interaction between tomato, <i>Streptomyces</i>, and GBNV was analyzed by qRTPCR, indicating that the consortia could decrease the virus severity through induced systemic resistance pathways. Thus, it is concluded that <i>Streptomyces</i> spp. can be used for the management of GBNV in tomato.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04030-6.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Consortia of <i>Streptomyces</i> spp. triggers defense/PAMP genes during the interaction of <i>Groundnut bud</i> <i>necrosis</i> <i>orthotospovirus</i> in tomato.\",\"authors\":\"A S Rahul Dev, S Harish, G Karthikeyan, M Nivedha, C Sangeetha\",\"doi\":\"10.1007/s13205-024-04030-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, <i>Streptomyces</i> spp. were isolated, characterized, and the efficacy was tested against <i>Groundnut bud necrosis orthotospovirus</i> (GBNV) in tomato. Among the three inoculation methods viz., pre-, post-, and simultaneous inoculation, tested for antiviral efficacy, pre-inoculation spray of the three <i>Streptomyces</i> spp. viz., <i>Streptomyces mutabilis, Streptomyces rochei,</i> and <i>Streptomyces chrestomyceticus</i> (SAT1, SAT4, and STR2) recorded the least disease severity index (DSI) of GBNV in tomato. In the pot culture, seed treatment of liquid consortium of three <i>Streptomyces</i> spp. @ 2 ml/g of seeds along with seedling dip at 10 ml/lit followed by soil drenching at 10 ml/lit on 7 days after transplanting (DAT) and foliar application at 0.5% on 15 DAT, 30 DAT, and 45 DAT recorded the least GBNV infection of 15% DSI and 16.67% DSI in trial I and II respectively. Besides, under field conditions, the disease incidence was reduced to 14.44% recording a higher yield of 76.67 t/ha in the treated plants against 63.99 t/ha in control. Upregulation of defense genes viz., PR1, PR2, PR6, WRKY, MAPKK, and NPR1 during tripartite interaction between tomato, <i>Streptomyces</i>, and GBNV was analyzed by qRTPCR, indicating that the consortia could decrease the virus severity through induced systemic resistance pathways. Thus, it is concluded that <i>Streptomyces</i> spp. can be used for the management of GBNV in tomato.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04030-6.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04030-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04030-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究分离、鉴定了链霉菌属,并测试了它们对番茄落花生芽坏死病毒(GBNV)的抗病毒效果。在三种接种方法(即接种前、接种后和同时接种)的抗病毒效果测试中,接种前喷洒三种链霉菌属(即变异链霉菌属、罗氏链霉菌属和雷氏链霉菌属(SAT1、SAT4 和 STR2))对番茄 GBNV 的病害严重指数(DSI)最低。在盆栽栽培中,用三种链霉菌属(SAT1、SAT4 和 STR2)的液体复合菌液处理种子,每克种子用量为 2 毫升。在盆栽栽培中,试验 I 和试验 II 中,三种链霉菌的液态复合体(2 毫升/克种子)与 10 毫升/升的浸苗剂一起进行种子处理,然后在移栽后 7 天(DAT)以 10 毫升/升的剂量进行土壤淋洗,并在 15 天(DAT)、30 天(DAT)和 45 天(DAT)以 0.5%的剂量进行叶面喷施,记录到的 GBNV 感染率最低,分别为 15% DSI 和 16.67%DSI。此外,在田间条件下,病害发生率降低到 14.44%,经处理的植株产量为 76.67 吨/公顷,对照为 63.99 吨/公顷。通过 qRTPCR 分析,在番茄、链霉菌和 GBNV 的三方相互作用过程中,防御基因(即 PR1、PR2、PR6、WRKY、MAPKK 和 NPR1)的上调表明,联合体可通过诱导系统抗性途径降低病毒的严重程度。因此,结论是链霉菌属可用于管理番茄中的 GBNV:在线版本包含补充材料,可查阅 10.1007/s13205-024-04030-6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Consortia of <i>Streptomyces</i> spp. triggers defense/PAMP genes during the interaction of <i>Groundnut bud</i> <i>necrosis</i> <i>orthotospovirus</i> in tomato.

Consortia of Streptomyces spp. triggers defense/PAMP genes during the interaction of Groundnut bud necrosis orthotospovirus in tomato.

In the present study, Streptomyces spp. were isolated, characterized, and the efficacy was tested against Groundnut bud necrosis orthotospovirus (GBNV) in tomato. Among the three inoculation methods viz., pre-, post-, and simultaneous inoculation, tested for antiviral efficacy, pre-inoculation spray of the three Streptomyces spp. viz., Streptomyces mutabilis, Streptomyces rochei, and Streptomyces chrestomyceticus (SAT1, SAT4, and STR2) recorded the least disease severity index (DSI) of GBNV in tomato. In the pot culture, seed treatment of liquid consortium of three Streptomyces spp. @ 2 ml/g of seeds along with seedling dip at 10 ml/lit followed by soil drenching at 10 ml/lit on 7 days after transplanting (DAT) and foliar application at 0.5% on 15 DAT, 30 DAT, and 45 DAT recorded the least GBNV infection of 15% DSI and 16.67% DSI in trial I and II respectively. Besides, under field conditions, the disease incidence was reduced to 14.44% recording a higher yield of 76.67 t/ha in the treated plants against 63.99 t/ha in control. Upregulation of defense genes viz., PR1, PR2, PR6, WRKY, MAPKK, and NPR1 during tripartite interaction between tomato, Streptomyces, and GBNV was analyzed by qRTPCR, indicating that the consortia could decrease the virus severity through induced systemic resistance pathways. Thus, it is concluded that Streptomyces spp. can be used for the management of GBNV in tomato.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04030-6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信