不对称体:基本函数中旋转矩阵的分析解法实例和 Dzhanibekov 效应

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Alexei A. Deriglazov
{"title":"不对称体:基本函数中旋转矩阵的分析解法实例和 Dzhanibekov 效应","authors":"Alexei A. Deriglazov","doi":"10.1016/j.cnsns.2024.108257","DOIUrl":null,"url":null,"abstract":"<div><p>We solved the Poisson equations, obtaining their exact solution in elementary functions for the rotation matrix of a free asymmetrical body with angular velocity vector lying on separatrices. This allows us to discuss the temporal evolution of Dzhanibekov’s nut directly in the laboratory system, where it is observed. The rotation matrix depends on two parameters with clear physical interpretation as a frequency and a damping factor of the solution. Qualitative analysis of the solution shows that it properly describes a single-jump Dzhanibekov effect.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An asymmetrical body: Example of analytical solution for the rotation matrix in elementary functions and Dzhanibekov effect\",\"authors\":\"Alexei A. Deriglazov\",\"doi\":\"10.1016/j.cnsns.2024.108257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We solved the Poisson equations, obtaining their exact solution in elementary functions for the rotation matrix of a free asymmetrical body with angular velocity vector lying on separatrices. This allows us to discuss the temporal evolution of Dzhanibekov’s nut directly in the laboratory system, where it is observed. The rotation matrix depends on two parameters with clear physical interpretation as a frequency and a damping factor of the solution. Qualitative analysis of the solution shows that it properly describes a single-jump Dzhanibekov effect.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004428\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004428","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们求解了泊松方程,得到了基本函数中自由不对称体旋转矩阵的精确解,该旋转矩阵的角速度矢量位于分离矩阵上。这样,我们就可以直接在实验室系统中讨论杰尼贝可夫螺母的时间演变,因为在实验室系统中可以观测到杰尼贝可夫螺母。旋转矩阵取决于两个参数,这两个参数在物理上被明确解释为解法的频率和阻尼系数。对解法的定性分析表明,它正确地描述了单跳的 Dzhanibekov 效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An asymmetrical body: Example of analytical solution for the rotation matrix in elementary functions and Dzhanibekov effect

We solved the Poisson equations, obtaining their exact solution in elementary functions for the rotation matrix of a free asymmetrical body with angular velocity vector lying on separatrices. This allows us to discuss the temporal evolution of Dzhanibekov’s nut directly in the laboratory system, where it is observed. The rotation matrix depends on two parameters with clear physical interpretation as a frequency and a damping factor of the solution. Qualitative analysis of the solution shows that it properly describes a single-jump Dzhanibekov effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信