管道中 X80 碳钢的超临界二氧化碳腐蚀行为研究:现场实验和 DFT 研究

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Xiaodan Wang , Pu Yang , Ruidong Li , Guohu Tong , Jukai Chen , Yueshe Wang
{"title":"管道中 X80 碳钢的超临界二氧化碳腐蚀行为研究:现场实验和 DFT 研究","authors":"Xiaodan Wang ,&nbsp;Pu Yang ,&nbsp;Ruidong Li ,&nbsp;Guohu Tong ,&nbsp;Jukai Chen ,&nbsp;Yueshe Wang","doi":"10.1016/j.supflu.2024.106371","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical corrosion behavior of X80 carbon steel was investigated in a supercritical CO<sub>2</sub> (sCO<sub>2</sub>) environment at 60 ℃ and 9 MPa, by in-situ experiments and density functional theory (DFT) calculations, revealing the corrosion mechanism. For in situ electrochemical measurements, two novel CO<sub>2</sub>-rich and H<sub>2</sub>O-rich cells were developed to replace the traditional three-electrode cell. Electrochemical impedance spectroscopy revealed distinct differences in the corrosion behavior between CO<sub>2</sub>-rich and H<sub>2</sub>O-rich environments during the later stages of testing. In H<sub>2</sub>O-rich environments, as corrosion time increased, the corrosion product layer gradually changed from porous to dense, eventually forming a protective layer. In CO<sub>2</sub>-rich environments, corrosion occurs mainly in areas where water condenses to form FeCO<sub>3</sub>. Simultaneously, microscopic calculations provided evidence for the three-step sCO<sub>2</sub> hydrolysis mechanism and the formation of FeCO<sub>3</sub> products.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106371"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of supercritical CO2 corrosion behavior of X80 carbon steel in pipelines: An in situ experimental and DFT study\",\"authors\":\"Xiaodan Wang ,&nbsp;Pu Yang ,&nbsp;Ruidong Li ,&nbsp;Guohu Tong ,&nbsp;Jukai Chen ,&nbsp;Yueshe Wang\",\"doi\":\"10.1016/j.supflu.2024.106371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrochemical corrosion behavior of X80 carbon steel was investigated in a supercritical CO<sub>2</sub> (sCO<sub>2</sub>) environment at 60 ℃ and 9 MPa, by in-situ experiments and density functional theory (DFT) calculations, revealing the corrosion mechanism. For in situ electrochemical measurements, two novel CO<sub>2</sub>-rich and H<sub>2</sub>O-rich cells were developed to replace the traditional three-electrode cell. Electrochemical impedance spectroscopy revealed distinct differences in the corrosion behavior between CO<sub>2</sub>-rich and H<sub>2</sub>O-rich environments during the later stages of testing. In H<sub>2</sub>O-rich environments, as corrosion time increased, the corrosion product layer gradually changed from porous to dense, eventually forming a protective layer. In CO<sub>2</sub>-rich environments, corrosion occurs mainly in areas where water condenses to form FeCO<sub>3</sub>. Simultaneously, microscopic calculations provided evidence for the three-step sCO<sub>2</sub> hydrolysis mechanism and the formation of FeCO<sub>3</sub> products.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"213 \",\"pages\":\"Article 106371\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624002067\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过原位实验和密度泛函理论(DFT)计算,研究了 X80 碳钢在 60 ℃ 和 9 MPa 的超临界 CO(sCO)环境中的电化学腐蚀行为,揭示了腐蚀机理。为进行原位电化学测量,开发了两种新型富含 CO 和 HO 的电池,以取代传统的三电极电池。电化学阻抗光谱显示,在测试的后期阶段,富含 CO 和富含 HO 环境中的腐蚀行为存在明显差异。在富含 HO 的环境中,随着腐蚀时间的延长,腐蚀产物层逐渐从多孔变为致密,最终形成保护层。在富含 CO 的环境中,腐蚀主要发生在水冷凝形成 FeCO 的区域。同时,微观计算为三步 sCO 水解机制和 FeCO 产物的形成提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of supercritical CO2 corrosion behavior of X80 carbon steel in pipelines: An in situ experimental and DFT study

The electrochemical corrosion behavior of X80 carbon steel was investigated in a supercritical CO2 (sCO2) environment at 60 ℃ and 9 MPa, by in-situ experiments and density functional theory (DFT) calculations, revealing the corrosion mechanism. For in situ electrochemical measurements, two novel CO2-rich and H2O-rich cells were developed to replace the traditional three-electrode cell. Electrochemical impedance spectroscopy revealed distinct differences in the corrosion behavior between CO2-rich and H2O-rich environments during the later stages of testing. In H2O-rich environments, as corrosion time increased, the corrosion product layer gradually changed from porous to dense, eventually forming a protective layer. In CO2-rich environments, corrosion occurs mainly in areas where water condenses to form FeCO3. Simultaneously, microscopic calculations provided evidence for the three-step sCO2 hydrolysis mechanism and the formation of FeCO3 products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信