声学形状 DNA 可编程材料

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Z. A. Arnon, S. Piperno, D. C. Redeker, E. Randall, A. V. Tkachenko, H. Shpaisman, O. Gang
{"title":"声学形状 DNA 可编程材料","authors":"Z. A. Arnon, S. Piperno, D. C. Redeker, E. Randall, A. V. Tkachenko, H. Shpaisman, O. Gang","doi":"10.1038/s41467-024-51049-7","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in DNA nanotechnology allow for the assembly of nanocomponents with nanoscale precision, leading to the emergence of DNA-based material fabrication approaches. Yet, transferring these nano- and micron-scale structural arrangements to the macroscale morphologies remains a challenge, which limits the development of materials and devices based on DNA nanotechnology. Here, we demonstrate a materials fabrication approach that combines DNA-programmable assembly with actively driven processes controlled by acoustic fields. This combination provides a prescribed nanoscale order, as dictated by equilibrium assembly through DNA-encoded interactions, and field-shaped macroscale morphology, as regulated by out-of-equilibrium materials formation through specific acoustic stimulation. Using optical and electron microscopy imaging and x-ray scattering, we further revealed the nucleation processes, domain fusion, and crystal growth under different acoustically stimulated conditions. The developed approach provides a pathway for the fabrication of complexly shaped macroscale morphologies for DNA-programmable nanomaterials by controlling spatiotemporal characteristics of the acoustic fields.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"100 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustically shaped DNA-programmable materials\",\"authors\":\"Z. A. Arnon, S. Piperno, D. C. Redeker, E. Randall, A. V. Tkachenko, H. Shpaisman, O. Gang\",\"doi\":\"10.1038/s41467-024-51049-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in DNA nanotechnology allow for the assembly of nanocomponents with nanoscale precision, leading to the emergence of DNA-based material fabrication approaches. Yet, transferring these nano- and micron-scale structural arrangements to the macroscale morphologies remains a challenge, which limits the development of materials and devices based on DNA nanotechnology. Here, we demonstrate a materials fabrication approach that combines DNA-programmable assembly with actively driven processes controlled by acoustic fields. This combination provides a prescribed nanoscale order, as dictated by equilibrium assembly through DNA-encoded interactions, and field-shaped macroscale morphology, as regulated by out-of-equilibrium materials formation through specific acoustic stimulation. Using optical and electron microscopy imaging and x-ray scattering, we further revealed the nucleation processes, domain fusion, and crystal growth under different acoustically stimulated conditions. The developed approach provides a pathway for the fabrication of complexly shaped macroscale morphologies for DNA-programmable nanomaterials by controlling spatiotemporal characteristics of the acoustic fields.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51049-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51049-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

DNA 纳米技术的最新进展允许以纳米尺度的精度组装纳米元件,从而出现了基于 DNA 的材料制造方法。然而,将这些纳米和微米尺度的结构排列转移到宏观尺度的形态仍然是一个挑战,这限制了基于 DNA 纳米技术的材料和设备的发展。在这里,我们展示了一种将 DNA 可编程组装与声场控制的主动驱动过程相结合的材料制造方法。这种结合提供了一种规定的纳米级秩序(由通过 DNA 编码的相互作用进行的平衡组装决定)和场形宏观形态(由通过特定声学刺激形成的非平衡材料调节)。利用光学和电子显微镜成像以及 X 射线散射,我们进一步揭示了不同声学刺激条件下的成核过程、畴融合和晶体生长。所开发的方法为通过控制声场的时空特征来制造形状复杂的宏观形态的 DNA 可编程纳米材料提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acoustically shaped DNA-programmable materials

Acoustically shaped DNA-programmable materials

Recent advances in DNA nanotechnology allow for the assembly of nanocomponents with nanoscale precision, leading to the emergence of DNA-based material fabrication approaches. Yet, transferring these nano- and micron-scale structural arrangements to the macroscale morphologies remains a challenge, which limits the development of materials and devices based on DNA nanotechnology. Here, we demonstrate a materials fabrication approach that combines DNA-programmable assembly with actively driven processes controlled by acoustic fields. This combination provides a prescribed nanoscale order, as dictated by equilibrium assembly through DNA-encoded interactions, and field-shaped macroscale morphology, as regulated by out-of-equilibrium materials formation through specific acoustic stimulation. Using optical and electron microscopy imaging and x-ray scattering, we further revealed the nucleation processes, domain fusion, and crystal growth under different acoustically stimulated conditions. The developed approach provides a pathway for the fabrication of complexly shaped macroscale morphologies for DNA-programmable nanomaterials by controlling spatiotemporal characteristics of the acoustic fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信