Lingmin Cao , Xiaobo He , Huaiyu Yuan , Minghui Zhao , Xuelin Qiu , Martha K. Savage
{"title":"新西兰北岛西南部上地幔地震各向异性:对区域上地幔和板块变形的影响","authors":"Lingmin Cao , Xiaobo He , Huaiyu Yuan , Minghui Zhao , Xuelin Qiu , Martha K. Savage","doi":"10.1016/j.tecto.2024.230455","DOIUrl":null,"url":null,"abstract":"<div><p>We employed shear-wave splitting analysis on both teleseismic <em>SKS</em> and <em>S</em> waves, and <em>S</em> waves from deep (150–250 km) local earthquakes collected from a dense array with 43 temporary broadband seismic stations and nine long-term seismic stations centered at Mount Taranaki to characterize the upper-mantle dynamics in the southwestern North Island of New Zealand, in areas previously unexamined for shear-wave splitting. We observed predominantly trench-parallel fast polarizations and strikingly large delay times over 3 s from teleseismic analysis. In contrast, local <em>S</em> analysis yielded a sharp transition of fast-polarization from trench-parallel in the northeast to trench-normal in the southwest. Trench-parallel fast-polarization from teleseismic analysis may be attributed to sub-slab trench-parallel flow or to trench-parallel fractures in the subducting slab. More importantly, we attribute large delay times to deep upper-mantle (200–400 km depth) deformation, possibly associated with the dynamic interaction between the downgoing slab and the 410-km discontinuity or with the lithosphere delamination near the Taranaki-Ruapehu line. In contrast, the trench-parallel anisotropy from the local <em>S</em> waves in the northeast could be caused by fluid-bearing cracks in the crust of the Taupō Volcanic Zone and/or by trench-parallel fractures in the subducting slab resulting from outer rise bending. The abrupt change to trench-normal may be related to stress variations in the downgoing slab at different depths.</p></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"887 ","pages":"Article 230455"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper-mantle seismic anisotropy in the southwestern North Island, New Zealand: Implications for regional upper-mantle and slab deformation\",\"authors\":\"Lingmin Cao , Xiaobo He , Huaiyu Yuan , Minghui Zhao , Xuelin Qiu , Martha K. Savage\",\"doi\":\"10.1016/j.tecto.2024.230455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We employed shear-wave splitting analysis on both teleseismic <em>SKS</em> and <em>S</em> waves, and <em>S</em> waves from deep (150–250 km) local earthquakes collected from a dense array with 43 temporary broadband seismic stations and nine long-term seismic stations centered at Mount Taranaki to characterize the upper-mantle dynamics in the southwestern North Island of New Zealand, in areas previously unexamined for shear-wave splitting. We observed predominantly trench-parallel fast polarizations and strikingly large delay times over 3 s from teleseismic analysis. In contrast, local <em>S</em> analysis yielded a sharp transition of fast-polarization from trench-parallel in the northeast to trench-normal in the southwest. Trench-parallel fast-polarization from teleseismic analysis may be attributed to sub-slab trench-parallel flow or to trench-parallel fractures in the subducting slab. More importantly, we attribute large delay times to deep upper-mantle (200–400 km depth) deformation, possibly associated with the dynamic interaction between the downgoing slab and the 410-km discontinuity or with the lithosphere delamination near the Taranaki-Ruapehu line. In contrast, the trench-parallel anisotropy from the local <em>S</em> waves in the northeast could be caused by fluid-bearing cracks in the crust of the Taupō Volcanic Zone and/or by trench-parallel fractures in the subducting slab resulting from outer rise bending. The abrupt change to trench-normal may be related to stress variations in the downgoing slab at different depths.</p></div>\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":\"887 \",\"pages\":\"Article 230455\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040195124002579\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124002579","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Upper-mantle seismic anisotropy in the southwestern North Island, New Zealand: Implications for regional upper-mantle and slab deformation
We employed shear-wave splitting analysis on both teleseismic SKS and S waves, and S waves from deep (150–250 km) local earthquakes collected from a dense array with 43 temporary broadband seismic stations and nine long-term seismic stations centered at Mount Taranaki to characterize the upper-mantle dynamics in the southwestern North Island of New Zealand, in areas previously unexamined for shear-wave splitting. We observed predominantly trench-parallel fast polarizations and strikingly large delay times over 3 s from teleseismic analysis. In contrast, local S analysis yielded a sharp transition of fast-polarization from trench-parallel in the northeast to trench-normal in the southwest. Trench-parallel fast-polarization from teleseismic analysis may be attributed to sub-slab trench-parallel flow or to trench-parallel fractures in the subducting slab. More importantly, we attribute large delay times to deep upper-mantle (200–400 km depth) deformation, possibly associated with the dynamic interaction between the downgoing slab and the 410-km discontinuity or with the lithosphere delamination near the Taranaki-Ruapehu line. In contrast, the trench-parallel anisotropy from the local S waves in the northeast could be caused by fluid-bearing cracks in the crust of the Taupō Volcanic Zone and/or by trench-parallel fractures in the subducting slab resulting from outer rise bending. The abrupt change to trench-normal may be related to stress variations in the downgoing slab at different depths.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods