物理模型参数比可以检索耕地地区不同类型土壤的骨料大小

IF 6.1 1区 农林科学 Q1 SOIL SCIENCE
{"title":"物理模型参数比可以检索耕地地区不同类型土壤的骨料大小","authors":"","doi":"10.1016/j.still.2024.106262","DOIUrl":null,"url":null,"abstract":"<div><p>Soil aggregate size, which is a proxy used to guide agricultural decisions and tillage management, can be estimated using optical remote sensing techniques. However, limited investigation has been conducted into the potential of using a physical model to retrieve soil aggregate size (&lt; 2 mm) from different types of soil. This study is based on the multi-angular spectral measurements of seven soil samples from five soil types with 14 aggregate size fractions collected in Northeast China, three versions of the Hapke model were inverted using the Bayesian method. The findings confirmed that all three versions of the Hapke model can well characterize the angular reflection characteristics of all soil samples with different aggregate sizes. The inverted photometric parameters such as single scattering albedo <em>ω</em>, shape parameter <em>b</em>, and asymmetry parameter <em>c</em> were found to be sensitive to soil aggregate size, but the relationships rely on soil types because of the dependence of parameters related to soil composition. In order to obtain a general model that can be applied to different types of soil, the ratio of parameters (RoP) = (<em>b + c</em>)/<em>ω</em>, which is controlled by the external structure of soil aggregates, was proposed to retrieve the aggregate size from different soil types. Results show that the RoP can robustly capture the aggregate size of the soil with high accuracy and is insensitive to soil types. The combination of photometric parameters related to soil aggregate size provides a new method for retrieving the structural properties of the soil by eliminating interfering factors.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ratio of physical model parameters can retrieve aggregate size from different types of soil in cultivated regions\",\"authors\":\"\",\"doi\":\"10.1016/j.still.2024.106262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil aggregate size, which is a proxy used to guide agricultural decisions and tillage management, can be estimated using optical remote sensing techniques. However, limited investigation has been conducted into the potential of using a physical model to retrieve soil aggregate size (&lt; 2 mm) from different types of soil. This study is based on the multi-angular spectral measurements of seven soil samples from five soil types with 14 aggregate size fractions collected in Northeast China, three versions of the Hapke model were inverted using the Bayesian method. The findings confirmed that all three versions of the Hapke model can well characterize the angular reflection characteristics of all soil samples with different aggregate sizes. The inverted photometric parameters such as single scattering albedo <em>ω</em>, shape parameter <em>b</em>, and asymmetry parameter <em>c</em> were found to be sensitive to soil aggregate size, but the relationships rely on soil types because of the dependence of parameters related to soil composition. In order to obtain a general model that can be applied to different types of soil, the ratio of parameters (RoP) = (<em>b + c</em>)/<em>ω</em>, which is controlled by the external structure of soil aggregates, was proposed to retrieve the aggregate size from different soil types. Results show that the RoP can robustly capture the aggregate size of the soil with high accuracy and is insensitive to soil types. The combination of photometric parameters related to soil aggregate size provides a new method for retrieving the structural properties of the soil by eliminating interfering factors.</p></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724002630\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002630","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤团粒大小是用于指导农业决策和耕作管理的一个替代指标,可以利用光学遥感技术进行估算。然而,利用物理模型从不同类型的土壤中获取土壤团粒大小(小于 2 毫米)的潜力方面的研究还很有限。本研究基于在中国东北地区采集的五种土壤类型的 7 个土壤样本的多角度光谱测量结果,共包含 14 个骨料粒径分部,利用贝叶斯方法反演了三个版本的 Hapke 模型。结果表明,三个版本的 Hapke 模型都能很好地表征不同骨料粒径的所有土壤样品的角反射特征。反演的光度参数,如单次散射反照率、形状参数和不对称参数,对土壤骨料大小很敏感,但由于参数与土壤成分有关,其关系依赖于土壤类型。为了获得一个可适用于不同类型土壤的通用模型,提出了由土壤团粒外部结构控制的参数比(RoP)=()/来检索不同类型土壤的团粒大小。结果表明,RoP 可以稳健地捕捉土壤的集料粒度,且精度高,对土壤类型不敏感。将与土壤集料粒度相关的光度参数结合起来,可以排除干扰因素,为检索土壤结构特性提供一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ratio of physical model parameters can retrieve aggregate size from different types of soil in cultivated regions

Soil aggregate size, which is a proxy used to guide agricultural decisions and tillage management, can be estimated using optical remote sensing techniques. However, limited investigation has been conducted into the potential of using a physical model to retrieve soil aggregate size (< 2 mm) from different types of soil. This study is based on the multi-angular spectral measurements of seven soil samples from five soil types with 14 aggregate size fractions collected in Northeast China, three versions of the Hapke model were inverted using the Bayesian method. The findings confirmed that all three versions of the Hapke model can well characterize the angular reflection characteristics of all soil samples with different aggregate sizes. The inverted photometric parameters such as single scattering albedo ω, shape parameter b, and asymmetry parameter c were found to be sensitive to soil aggregate size, but the relationships rely on soil types because of the dependence of parameters related to soil composition. In order to obtain a general model that can be applied to different types of soil, the ratio of parameters (RoP) = (b + c)/ω, which is controlled by the external structure of soil aggregates, was proposed to retrieve the aggregate size from different soil types. Results show that the RoP can robustly capture the aggregate size of the soil with high accuracy and is insensitive to soil types. The combination of photometric parameters related to soil aggregate size provides a new method for retrieving the structural properties of the soil by eliminating interfering factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil & Tillage Research
Soil & Tillage Research 农林科学-土壤科学
CiteScore
13.00
自引率
6.20%
发文量
266
审稿时长
5 months
期刊介绍: Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research: The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信