带状态约束的不确定非线性系统基于 MPC 的安全扰动抑制控制。

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhiyuan Zhang , Maopeng Ran , Chaoyang Dong
{"title":"带状态约束的不确定非线性系统基于 MPC 的安全扰动抑制控制。","authors":"Zhiyuan Zhang ,&nbsp;Maopeng Ran ,&nbsp;Chaoyang Dong","doi":"10.1016/j.isatra.2024.07.036","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a safe model predictive control (MPC)-based disturbance rejection control for a broad range of uncertain nonlinear systems subject to complex state safety constraints. The system under study is composed of a nominal model and an uncertain term that encapsulates modeling uncertainty, control mismatch, and external disturbances. In order to estimate the system state and total uncertainty, an extended state observer (ESO) is first designed. Utilizing the output of the ESO, the control compensates for the total uncertainty in real time and concurrently implements a control barrier function (CBF)-based MPC for the compensated system. The proposed control framework guarantees both safety and disturbance rejection. Compared to the baseline algorithm CBF-MPC, the proposed method significantly enhances system stability with a smaller root mean square (RMS) error of the system state from the equilibrium point. Rigorous theoretical analysis and simulation experiments are provided to validate the effectiveness of the proposed scheme.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 233-242"},"PeriodicalIF":6.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe MPC-based disturbance rejection control for uncertain nonlinear systems with state constraints\",\"authors\":\"Zhiyuan Zhang ,&nbsp;Maopeng Ran ,&nbsp;Chaoyang Dong\",\"doi\":\"10.1016/j.isatra.2024.07.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies a safe model predictive control (MPC)-based disturbance rejection control for a broad range of uncertain nonlinear systems subject to complex state safety constraints. The system under study is composed of a nominal model and an uncertain term that encapsulates modeling uncertainty, control mismatch, and external disturbances. In order to estimate the system state and total uncertainty, an extended state observer (ESO) is first designed. Utilizing the output of the ESO, the control compensates for the total uncertainty in real time and concurrently implements a control barrier function (CBF)-based MPC for the compensated system. The proposed control framework guarantees both safety and disturbance rejection. Compared to the baseline algorithm CBF-MPC, the proposed method significantly enhances system stability with a smaller root mean square (RMS) error of the system state from the equilibrium point. Rigorous theoretical analysis and simulation experiments are provided to validate the effectiveness of the proposed scheme.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 233-242\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003690\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003690","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于模型预测控制(MPC)的安全扰动抑制控制,适用于各种受复杂状态安全约束的不确定非线性系统。所研究的系统由一个标称模型和一个不确定项组成,不确定项包括建模不确定性、控制不匹配和外部干扰。为了估计系统状态和总的不确定性,首先要设计一个扩展状态观测器(ESO)。利用 ESO 的输出,控制可对总不确定性进行实时补偿,同时对补偿后的系统实施基于控制障碍函数 (CBF) 的 MPC。所提出的控制框架同时保证了安全性和干扰抑制。与基线算法 CBF-MPC 相比,所提出的方法显著增强了系统稳定性,系统状态与平衡点的均方根误差更小。严谨的理论分析和仿真实验验证了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe MPC-based disturbance rejection control for uncertain nonlinear systems with state constraints

This paper studies a safe model predictive control (MPC)-based disturbance rejection control for a broad range of uncertain nonlinear systems subject to complex state safety constraints. The system under study is composed of a nominal model and an uncertain term that encapsulates modeling uncertainty, control mismatch, and external disturbances. In order to estimate the system state and total uncertainty, an extended state observer (ESO) is first designed. Utilizing the output of the ESO, the control compensates for the total uncertainty in real time and concurrently implements a control barrier function (CBF)-based MPC for the compensated system. The proposed control framework guarantees both safety and disturbance rejection. Compared to the baseline algorithm CBF-MPC, the proposed method significantly enhances system stability with a smaller root mean square (RMS) error of the system state from the equilibrium point. Rigorous theoretical analysis and simulation experiments are provided to validate the effectiveness of the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信