Leslie K. Kelley , Savannah H.M. Lightfoot , Matthew N. Hill , Jason W. Middleton , Nicholas W. Gilpin
{"title":"利用慢性炎症疼痛模型,吸入四氢大麻酚蒸气可减轻大鼠的痛觉过度。","authors":"Leslie K. Kelley , Savannah H.M. Lightfoot , Matthew N. Hill , Jason W. Middleton , Nicholas W. Gilpin","doi":"10.1016/j.jpain.2024.104649","DOIUrl":null,"url":null,"abstract":"<div><div>Humans use cannabinoid drugs to alleviate pain. As cannabis and cannabinoids are legalized in the United States for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain. Here, we tested the effects of repeated ∆<sup>9</sup>-tetrahydrocannabinol <sup>(THC)</sup> vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (ie, treated with complete Freund’s adjuvant [CFA]). We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA and also reduces mechanical hypersensitivity in CFA males but not females. Many of the antihyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure. We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the cannabinoid type-1 receptor inverse agonist AM251 (1 mg/kg, I.P.) blocks the antihyperalgesic effects of THC vapor in males and females. These data provide a foundation for future work that will explore the cells and circuits underlying the antihyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain.</div></div><div><h3>Perspective</h3><div>Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.</div></div>","PeriodicalId":51095,"journal":{"name":"Journal of Pain","volume":"25 11","pages":"Article 104649"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THC Vapor Inhalation Attenuates Hyperalgesia in Rats Using a Chronic Inflammatory Pain Model\",\"authors\":\"Leslie K. Kelley , Savannah H.M. Lightfoot , Matthew N. Hill , Jason W. Middleton , Nicholas W. Gilpin\",\"doi\":\"10.1016/j.jpain.2024.104649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Humans use cannabinoid drugs to alleviate pain. As cannabis and cannabinoids are legalized in the United States for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain. Here, we tested the effects of repeated ∆<sup>9</sup>-tetrahydrocannabinol <sup>(THC)</sup> vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (ie, treated with complete Freund’s adjuvant [CFA]). We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA and also reduces mechanical hypersensitivity in CFA males but not females. Many of the antihyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure. We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the cannabinoid type-1 receptor inverse agonist AM251 (1 mg/kg, I.P.) blocks the antihyperalgesic effects of THC vapor in males and females. These data provide a foundation for future work that will explore the cells and circuits underlying the antihyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain.</div></div><div><h3>Perspective</h3><div>Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.</div></div>\",\"PeriodicalId\":51095,\"journal\":{\"name\":\"Journal of Pain\",\"volume\":\"25 11\",\"pages\":\"Article 104649\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526590024005996\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pain","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526590024005996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
THC Vapor Inhalation Attenuates Hyperalgesia in Rats Using a Chronic Inflammatory Pain Model
Humans use cannabinoid drugs to alleviate pain. As cannabis and cannabinoids are legalized in the United States for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain. Here, we tested the effects of repeated ∆9-tetrahydrocannabinol (THC) vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (ie, treated with complete Freund’s adjuvant [CFA]). We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA and also reduces mechanical hypersensitivity in CFA males but not females. Many of the antihyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure. We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the cannabinoid type-1 receptor inverse agonist AM251 (1 mg/kg, I.P.) blocks the antihyperalgesic effects of THC vapor in males and females. These data provide a foundation for future work that will explore the cells and circuits underlying the antihyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain.
Perspective
Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.
期刊介绍:
The Journal of Pain publishes original articles related to all aspects of pain, including clinical and basic research, patient care, education, and health policy. Articles selected for publication in the Journal are most commonly reports of original clinical research or reports of original basic research. In addition, invited critical reviews, including meta analyses of drugs for pain management, invited commentaries on reviews, and exceptional case studies are published in the Journal. The mission of the Journal is to improve the care of patients in pain by providing a forum for clinical researchers, basic scientists, clinicians, and other health professionals to publish original research.