Kunhyung Bahk, Joohon Sung, Mitsuko Seki, Kyungjong Kim, Jina Kim, Hongjo Choi, Jake Whang, Satoshi Mitarai
{"title":"用于强化分子诊断的全系结核分枝杆菌参考基因组。","authors":"Kunhyung Bahk, Joohon Sung, Mitsuko Seki, Kyungjong Kim, Jina Kim, Hongjo Choi, Jake Whang, Satoshi Mitarai","doi":"10.1093/dnares/dsae023","DOIUrl":null,"url":null,"abstract":"<p><p>In Mycobacterium tuberculosis (MTB) control, whole genome sequencing-based molecular drug susceptibility testing (molDST-WGS) has emerged as a pivotal tool. However, the current reliance on a single-strain reference limits molDST-WGS's true potential. To address this, we introduce a new pan-lineage reference genome, 'MtbRf'. We assembled 'unmapped' reads from 3,614 MTB genomes (751 L1; 881 L2; 1,700 L3; and 282 L4) into 35 shared, annotated contigs (54 coding sequences [CDSs]). We constructed MtbRf through: (1) searching for contig homologues among genome database that precipitate results uniquely within Mycobacteria genus; (2) comparing genomes with H37Rv ('lift-over') to define 18 insertions; and (3) filling gaps in H37Rv with insertions. MtbRf adds 1.18% sequences to H37rv, salvaging >60% of previously unmapped reads. Transcriptomics confirmed gene expression of new CDSs. The new variants provided a moderate DST predictive value (AUROC 0.60-0.75). MtbRf thus unveils previously hidden genomic information and lays the foundation for lineage-specific molDST-WGS.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pan-lineage Mycobacterium tuberculosis reference genome for enhanced molecular diagnosis.\",\"authors\":\"Kunhyung Bahk, Joohon Sung, Mitsuko Seki, Kyungjong Kim, Jina Kim, Hongjo Choi, Jake Whang, Satoshi Mitarai\",\"doi\":\"10.1093/dnares/dsae023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Mycobacterium tuberculosis (MTB) control, whole genome sequencing-based molecular drug susceptibility testing (molDST-WGS) has emerged as a pivotal tool. However, the current reliance on a single-strain reference limits molDST-WGS's true potential. To address this, we introduce a new pan-lineage reference genome, 'MtbRf'. We assembled 'unmapped' reads from 3,614 MTB genomes (751 L1; 881 L2; 1,700 L3; and 282 L4) into 35 shared, annotated contigs (54 coding sequences [CDSs]). We constructed MtbRf through: (1) searching for contig homologues among genome database that precipitate results uniquely within Mycobacteria genus; (2) comparing genomes with H37Rv ('lift-over') to define 18 insertions; and (3) filling gaps in H37Rv with insertions. MtbRf adds 1.18% sequences to H37rv, salvaging >60% of previously unmapped reads. Transcriptomics confirmed gene expression of new CDSs. The new variants provided a moderate DST predictive value (AUROC 0.60-0.75). MtbRf thus unveils previously hidden genomic information and lays the foundation for lineage-specific molDST-WGS.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsae023\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsae023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Pan-lineage Mycobacterium tuberculosis reference genome for enhanced molecular diagnosis.
In Mycobacterium tuberculosis (MTB) control, whole genome sequencing-based molecular drug susceptibility testing (molDST-WGS) has emerged as a pivotal tool. However, the current reliance on a single-strain reference limits molDST-WGS's true potential. To address this, we introduce a new pan-lineage reference genome, 'MtbRf'. We assembled 'unmapped' reads from 3,614 MTB genomes (751 L1; 881 L2; 1,700 L3; and 282 L4) into 35 shared, annotated contigs (54 coding sequences [CDSs]). We constructed MtbRf through: (1) searching for contig homologues among genome database that precipitate results uniquely within Mycobacteria genus; (2) comparing genomes with H37Rv ('lift-over') to define 18 insertions; and (3) filling gaps in H37Rv with insertions. MtbRf adds 1.18% sequences to H37rv, salvaging >60% of previously unmapped reads. Transcriptomics confirmed gene expression of new CDSs. The new variants provided a moderate DST predictive value (AUROC 0.60-0.75). MtbRf thus unveils previously hidden genomic information and lays the foundation for lineage-specific molDST-WGS.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.