{"title":"大胆的保护方法","authors":"Robert M Ewers","doi":"10.1016/j.tree.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of 'super-sites' and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for 'smart conservation' provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"995-1003"},"PeriodicalIF":16.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An audacious approach to conservation.\",\"authors\":\"Robert M Ewers\",\"doi\":\"10.1016/j.tree.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of 'super-sites' and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for 'smart conservation' provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\" \",\"pages\":\"995-1003\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2024.07.003\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2024.07.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of 'super-sites' and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for 'smart conservation' provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.