探索农杆菌介导的遗传转化方法及其在百合花中的应用。

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xinyue Fan, Hongmei Sun
{"title":"探索农杆菌介导的遗传转化方法及其在百合花中的应用。","authors":"Xinyue Fan, Hongmei Sun","doi":"10.1186/s13007-024-01246-8","DOIUrl":null,"url":null,"abstract":"<p><p>As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"120"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium.\",\"authors\":\"Xinyue Fan, Hongmei Sun\",\"doi\":\"10.1186/s13007-024-01246-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"120\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01246-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01246-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

作为一种典型的球根花卉,百合具有很高的观赏、药用和食用价值,因此在世界各地被广泛种植。虽然育种工作经过了 10000 年的发展,但面对消费者日益增长的需求,仍然存在许多问题。生物技术方法将有助于解决这一问题,并将传统育种无法实现的性状纳入其中。目标性状包括休眠、发育、颜色、花香以及对各种生物和非生物胁迫的抗性,从而在种植、栽培、采后、植物保护和销售方面提高球茎和切花的质量。遗传转化技术是品种改良的重要方法,已成为植物功能基因组学研究的基础和核心,为各种植物改良计划提供了极大的帮助。然而,实现稳定高效的百合遗传转化在世界范围内一直困难重重。许多基因功能验证研究都依赖于模式植物的使用,这极大地限制了百合定向培育和种质改良的步伐。尽管在遗传转化系统的开发和优化方面取得了重大进展,但仍然存在不足之处。农杆菌介导的遗传转化已广泛应用于百合。然而,严重的基因型依赖性是限制百合遗传转化的主要瓶颈。本综述将总结过去 30 年来百合遗传转化材料的研究进展,包括如何利用稳定的遗传转化系统进行基因组工程,并概述百合转化的近期和未来应用。本文提供的信息包括优化和提高现有遗传转化方法效率以及创新的思路,为挖掘和鉴定关键性状的调控基因提供技术支持,并为百合的遗传改良和创新种质开发奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium.

As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信