{"title":"探索农杆菌介导的遗传转化方法及其在百合花中的应用。","authors":"Xinyue Fan, Hongmei Sun","doi":"10.1186/s13007-024-01246-8","DOIUrl":null,"url":null,"abstract":"<p><p>As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"120"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium.\",\"authors\":\"Xinyue Fan, Hongmei Sun\",\"doi\":\"10.1186/s13007-024-01246-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"120\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01246-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01246-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium.
As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.