Camila H Coelho, Susanna Marquez, Bergeline C Nguemwo Tentokam, Anne D Berhe, Kazutoyo Miura, Vishal N Rao, Carole A Long, Ogobara K Doumbo, Issaka Sagara, Sara Healy, Steven H Kleinstein, Patrick E Duffy
{"title":"与疟疾疫苗衍生人类 mAbs 的结合和功能活性相关的抗体基因特征。","authors":"Camila H Coelho, Susanna Marquez, Bergeline C Nguemwo Tentokam, Anne D Berhe, Kazutoyo Miura, Vishal N Rao, Carole A Long, Ogobara K Doumbo, Issaka Sagara, Sara Healy, Steven H Kleinstein, Patrick E Duffy","doi":"10.1038/s41541-024-00929-6","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of adjuvants on malaria vaccine-induced antibody repertoire is poorly understood. Here, we characterize the impact of two adjuvants, Alhydrogel® and AS01, on antibody clonotype diversity, binding and function, post malaria vaccination. We expressed 132 recombinant anti-Pfs230D1 human monoclonal antibodies (mAbs) from participants immunized with malaria transmission-blocking vaccine Pfs230D1, formulated with either Alhydrogel® or AS01. Anti-Pfs230D1 mAbs generated by Alhydrogel® formulation showed higher binding frequency to Pfs230D1 compared to AS01 formulation, although the frequency of functional mAbs was similar between adjuvant groups. Overall, the AS01 formulation induced anti-Pfs230D1 functional antibodies from a broader array of germline sequences versus the Alhydrogel® formulation. All mAbs using IGHV1-69 gene from the Alhydrogel® cohort bound to recombinant Pfs230D1, but did not block parasite transmission to mosquitoes, similar to the IGHV1-69 mAbs isolated from the AS01 cohort. These findings may help inform vaccine design and adjuvant selection for immunization with Plasmodium antigens.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibody gene features associated with binding and functional activity in malaria vaccine-derived human mAbs.\",\"authors\":\"Camila H Coelho, Susanna Marquez, Bergeline C Nguemwo Tentokam, Anne D Berhe, Kazutoyo Miura, Vishal N Rao, Carole A Long, Ogobara K Doumbo, Issaka Sagara, Sara Healy, Steven H Kleinstein, Patrick E Duffy\",\"doi\":\"10.1038/s41541-024-00929-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The impact of adjuvants on malaria vaccine-induced antibody repertoire is poorly understood. Here, we characterize the impact of two adjuvants, Alhydrogel® and AS01, on antibody clonotype diversity, binding and function, post malaria vaccination. We expressed 132 recombinant anti-Pfs230D1 human monoclonal antibodies (mAbs) from participants immunized with malaria transmission-blocking vaccine Pfs230D1, formulated with either Alhydrogel® or AS01. Anti-Pfs230D1 mAbs generated by Alhydrogel® formulation showed higher binding frequency to Pfs230D1 compared to AS01 formulation, although the frequency of functional mAbs was similar between adjuvant groups. Overall, the AS01 formulation induced anti-Pfs230D1 functional antibodies from a broader array of germline sequences versus the Alhydrogel® formulation. All mAbs using IGHV1-69 gene from the Alhydrogel® cohort bound to recombinant Pfs230D1, but did not block parasite transmission to mosquitoes, similar to the IGHV1-69 mAbs isolated from the AS01 cohort. These findings may help inform vaccine design and adjuvant selection for immunization with Plasmodium antigens.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-00929-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-00929-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Antibody gene features associated with binding and functional activity in malaria vaccine-derived human mAbs.
The impact of adjuvants on malaria vaccine-induced antibody repertoire is poorly understood. Here, we characterize the impact of two adjuvants, Alhydrogel® and AS01, on antibody clonotype diversity, binding and function, post malaria vaccination. We expressed 132 recombinant anti-Pfs230D1 human monoclonal antibodies (mAbs) from participants immunized with malaria transmission-blocking vaccine Pfs230D1, formulated with either Alhydrogel® or AS01. Anti-Pfs230D1 mAbs generated by Alhydrogel® formulation showed higher binding frequency to Pfs230D1 compared to AS01 formulation, although the frequency of functional mAbs was similar between adjuvant groups. Overall, the AS01 formulation induced anti-Pfs230D1 functional antibodies from a broader array of germline sequences versus the Alhydrogel® formulation. All mAbs using IGHV1-69 gene from the Alhydrogel® cohort bound to recombinant Pfs230D1, but did not block parasite transmission to mosquitoes, similar to the IGHV1-69 mAbs isolated from the AS01 cohort. These findings may help inform vaccine design and adjuvant selection for immunization with Plasmodium antigens.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.