使用香豆素衍生荧光化学传感器传感汞 (Hg2+):2015 至 2023 年的直观发展。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Ansh Jaswal, Suman Swami, Ajay Saini
{"title":"使用香豆素衍生荧光化学传感器传感汞 (Hg2+):2015 至 2023 年的直观发展。","authors":"Ansh Jaswal, Suman Swami, Ajay Saini","doi":"10.1007/s10895-024-03889-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mercury (Hg<sup>2+</sup>) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023.\",\"authors\":\"Ansh Jaswal, Suman Swami, Ajay Saini\",\"doi\":\"10.1007/s10895-024-03889-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03889-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03889-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,汞是一种剧毒金属,即使含量微量也有毒。一般来说,它通过不同途径进入食物链(尤其是鱼类)和水资源,并导致有害影响。由于这种金属的有害性,研究人员传统上采用多种方法对汞金属离子进行定期监测。然而,这些方法都有许多局限性,如专业技术成本高、检测程序复杂等。因此,使用这些方法来实时检测汞离子具有挑战性。因此,近年来基于荧光的分析工具迅速崛起。在各种荧光有机支架中,香豆素以其快速反应、光稳定性、高灵敏度、良好的选择性、优异的荧光强度和荧光量子产率而备受青睐。本综述深入探讨了 2015-2023 年间香豆素衍生化学传感器的发展。我们希望该综述能成为广大科学界设计更多有趣传感器的参考文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mercury (Hg<sup>2+</sup>) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023.

Mercury (Hg2+) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023.

Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信