{"title":"Piper betleoides C. DC.的抗炎潜力:体外和体内证据及机理见解。","authors":"Rikraj Loying, Bhaben Sharmah, Hiranmoy Barman, Anupriya Borah, Himangsu Kousik Bora, Jatin Kalita, Prasenjit Manna","doi":"10.1007/s10787-024-01539-3","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aims to investigate the anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides C. DC., also known as \"Jangli Paan\" in Northeast India, using lipopolysaccharide (LPS)-treated both cell culture (RAW264.7, macrophage cells) and animal (albino rat) model of inflammation. Treatment with leaf hydroalcoholic extract of Piper betleoides (PBtE) dose-dependently (5, 10, and 20 µg/mL) decreased the secretion of pro-inflammatory (TNF-α, IL-6, and MCP-1) and increased anti-inflammatory (IL-4 and IL-10) cytokines in LPS-treated macrophages. Similarly, treatment with PBtE also prevented the alternation in mRNA expression of inflammatory markers (TNF-α, CCL-2, IL-6, and IL-10) in LPS-treated macrophages. Dose-dependent supplementation with PBtE further reduced the production of intracellular ROS and increased the phagocytosis efficacies in LPS-treated cells. Further in vivo studies demonstrated that treatment with PBtE dose-dependently (50, 100, and 200 mg/kg body weight) prevented the dysregulation of the secretion of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-10) and reduced the circulatory levels of prostaglandin (PGE2) and nitric oxide products (nitrite) in LPS-treated animals. In addition, alternation of blood cell profiling and the liver as well as kidney dysfunctions were also prevented by the treatment with PBtE in LPS-treated rats. The anti-inflammatory potential of PBtE was comparable to those seen in sodium diclofenac (positive control) treated group. LC-MS analyses showed piperine, piperlongumine, piperolactam-A, and dehydropipernonaline and GC-MS analyses demonstrated phytol, caryophyllene, and falcarinol as the phytochemicals present in Piper betleoides, which might play an important role in preventing inflammation and associated pathophysiology. Different treatments didn't cause any toxicity in cell culture and animal models. This study for the first time demonstrated the promising anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"3411-3428"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory potential of Piper betleoides C. DC., a promising Piper species of Northeast India: in vitro and in vivo evidence and mechanistic insight.\",\"authors\":\"Rikraj Loying, Bhaben Sharmah, Hiranmoy Barman, Anupriya Borah, Himangsu Kousik Bora, Jatin Kalita, Prasenjit Manna\",\"doi\":\"10.1007/s10787-024-01539-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aims to investigate the anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides C. DC., also known as \\\"Jangli Paan\\\" in Northeast India, using lipopolysaccharide (LPS)-treated both cell culture (RAW264.7, macrophage cells) and animal (albino rat) model of inflammation. Treatment with leaf hydroalcoholic extract of Piper betleoides (PBtE) dose-dependently (5, 10, and 20 µg/mL) decreased the secretion of pro-inflammatory (TNF-α, IL-6, and MCP-1) and increased anti-inflammatory (IL-4 and IL-10) cytokines in LPS-treated macrophages. Similarly, treatment with PBtE also prevented the alternation in mRNA expression of inflammatory markers (TNF-α, CCL-2, IL-6, and IL-10) in LPS-treated macrophages. Dose-dependent supplementation with PBtE further reduced the production of intracellular ROS and increased the phagocytosis efficacies in LPS-treated cells. Further in vivo studies demonstrated that treatment with PBtE dose-dependently (50, 100, and 200 mg/kg body weight) prevented the dysregulation of the secretion of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-10) and reduced the circulatory levels of prostaglandin (PGE2) and nitric oxide products (nitrite) in LPS-treated animals. In addition, alternation of blood cell profiling and the liver as well as kidney dysfunctions were also prevented by the treatment with PBtE in LPS-treated rats. The anti-inflammatory potential of PBtE was comparable to those seen in sodium diclofenac (positive control) treated group. LC-MS analyses showed piperine, piperlongumine, piperolactam-A, and dehydropipernonaline and GC-MS analyses demonstrated phytol, caryophyllene, and falcarinol as the phytochemicals present in Piper betleoides, which might play an important role in preventing inflammation and associated pathophysiology. Different treatments didn't cause any toxicity in cell culture and animal models. This study for the first time demonstrated the promising anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"3411-3428\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-024-01539-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01539-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Anti-inflammatory potential of Piper betleoides C. DC., a promising Piper species of Northeast India: in vitro and in vivo evidence and mechanistic insight.
The present study aims to investigate the anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides C. DC., also known as "Jangli Paan" in Northeast India, using lipopolysaccharide (LPS)-treated both cell culture (RAW264.7, macrophage cells) and animal (albino rat) model of inflammation. Treatment with leaf hydroalcoholic extract of Piper betleoides (PBtE) dose-dependently (5, 10, and 20 µg/mL) decreased the secretion of pro-inflammatory (TNF-α, IL-6, and MCP-1) and increased anti-inflammatory (IL-4 and IL-10) cytokines in LPS-treated macrophages. Similarly, treatment with PBtE also prevented the alternation in mRNA expression of inflammatory markers (TNF-α, CCL-2, IL-6, and IL-10) in LPS-treated macrophages. Dose-dependent supplementation with PBtE further reduced the production of intracellular ROS and increased the phagocytosis efficacies in LPS-treated cells. Further in vivo studies demonstrated that treatment with PBtE dose-dependently (50, 100, and 200 mg/kg body weight) prevented the dysregulation of the secretion of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-10) and reduced the circulatory levels of prostaglandin (PGE2) and nitric oxide products (nitrite) in LPS-treated animals. In addition, alternation of blood cell profiling and the liver as well as kidney dysfunctions were also prevented by the treatment with PBtE in LPS-treated rats. The anti-inflammatory potential of PBtE was comparable to those seen in sodium diclofenac (positive control) treated group. LC-MS analyses showed piperine, piperlongumine, piperolactam-A, and dehydropipernonaline and GC-MS analyses demonstrated phytol, caryophyllene, and falcarinol as the phytochemicals present in Piper betleoides, which might play an important role in preventing inflammation and associated pathophysiology. Different treatments didn't cause any toxicity in cell culture and animal models. This study for the first time demonstrated the promising anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]